메뉴 건너뛰기




Volumn 28, Issue 21, 2015, Pages 1389-1396

Sensor fault detection and isolation of an industrial gas turbine using partial kernel PCA

Author keywords

Aeroderivative gas turbine; Fault detection and isolation; Partial kernel principal component analysis (PKPCA)

Indexed keywords

DATA HANDLING; GAS TURBINES; GASES; PLANT MANAGEMENT; PROCESS MONITORING; FAULT DETECTION; PRINCIPAL COMPONENT ANALYSIS;

EID: 84992494181     PISSN: None     EISSN: 24058963     Source Type: Conference Proceeding    
DOI: 10.1016/j.ifacol.2015.09.719     Document Type: Conference Paper
Times cited : (26)

References (44)
  • 2
    • 0008002255 scopus 로고    scopus 로고
    • Multiblock predective monitoring of continuouse process
    • Chen, G. and McAvoy, T. (1997). Multiblock predective monitoring of continuouse process. IFAC ADCHEM Symposium, 73-78.
    • (1997) IFAC ADCHEM Symposium , pp. 73-78
    • Chen, G.1    McAvoy, T.2
  • 3
    • 77749340024 scopus 로고    scopus 로고
    • Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes
    • Cheng, C., Hsu, C., and Chen, M. (2010). Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes. Ind. Eng. Chem. Res., 49, 2254-2262.
    • (2010) Ind. Eng. Chem. Res. , vol.49 , pp. 2254-2262
    • Cheng, C.1    Hsu, C.2    Chen, M.3
  • 5
    • 84883541048 scopus 로고    scopus 로고
    • Particle filtering for state and parameter estimation in gas turbine engine fault diagnostics
    • Daroogheh, N., Meskin, N., and Khorasani, K. (2013). Particle filtering for state and parameter estimation in gas turbine engine fault diagnostics. American Control Conference, 4343-4349.
    • (2013) American Control Conference , pp. 4343-4349
    • Daroogheh, N.1    Meskin, N.2    Khorasani, K.3
  • 6
    • 0033083952 scopus 로고    scopus 로고
    • Isolation enhanced principal component analysis
    • Gertler, J., Li, W., Huang, Y., and McAvoy, T. (1999a). Isolation enhanced principal component analysis. AIChE Journal, 2, 323-334.
    • (1999) AIChE Journal , vol.2 , pp. 323-334
    • Gertler, J.1    Li, W.2    Huang, Y.3    McAvoy, T.4
  • 7
    • 0000333541 scopus 로고    scopus 로고
    • Pincipal component analysis and parity relations
    • Gertler, J. and McAvoy, T. (1997). Pincipal component analysis and parity relations. IFAC SAFE PROCESS Symposium, 2, 837-842.
    • (1997) IFAC SAFE PROCESS Symposium , vol.2 , pp. 837-842
    • Gertler, J.1    McAvoy, T.2
  • 8
    • 0033083952 scopus 로고    scopus 로고
    • Isolation enhanced principal component analysis
    • Gertler, J., Li, W., Huang, Y., and McAvoy, T. (1999b). Isolation enhanced principal component analysis. AIChE Journal, 45(2), 323-334.
    • (1999) AIChE Journal , vol.45 , Issue.2 , pp. 323-334
    • Gertler, J.1    Li, W.2    Huang, Y.3    McAvoy, T.4
  • 11
    • 0034209455 scopus 로고    scopus 로고
    • Fault isolation in nonlinear systems with structured partial principal component analysis and clustering analysis
    • Huang, Y., Mcavoy, T. J., and Gertler, J. (2000). Fault isolation in nonlinear systems with structured partial principal component analysis and clustering analysis. The Canadian Journal of Chemical Engineering, 78(3), 569-577.
    • (2000) The Canadian Journal of Chemical Engineering , vol.78 , Issue.3 , pp. 569-577
    • Huang, Y.1    Mcavoy, T.J.2    Gertler, J.3
  • 12
    • 0348139702 scopus 로고    scopus 로고
    • Dimension reduction by local principle component analysis
    • Kambhatla, N. and Leen, T. (1997). Dimension reduction by local principle component analysis. Neural Computation, 7, 1493-1516.
    • (1997) Neural Computation , vol.7 , pp. 1493-1516
    • Kambhatla, N.1    Leen, T.2
  • 13
    • 0028272776 scopus 로고
    • Representation and separation of signals using nonlinear PCA type learning
    • Karhunen, J. and Joutsensalo, J. (1994). Representation and separation of signals using nonlinear PCA type learning. Neural Networks, 1, 113-127.
    • (1994) Neural Networks , vol.1 , pp. 113-127
    • Karhunen, J.1    Joutsensalo, J.2
  • 14
    • 0026849990 scopus 로고
    • Autoassociative neural networks
    • Kramer, M. (1992). Autoassociative neural networks. Computers Chem. Engng, 4, 313-328.
    • (1992) Computers Chem. Engng , vol.4 , pp. 313-328
    • Kramer, M.1
  • 16
  • 17
    • 33646380635 scopus 로고    scopus 로고
    • Dynamic process fault isolation by partial DPCA
    • LI, R. and RONG, G. (2006). Dynamic process fault isolation by partial DPCA. Chem. Biochem. Eng., 20(1), 69-77.
    • (2006) Chem. Biochem. Eng. , vol.20 , Issue.1 , pp. 69-77
    • Li, R.1    Rong, G.2
  • 19
    • 84855366049 scopus 로고    scopus 로고
    • Detection and identification of faults in npp instruments using kernel principle component analysis
    • Ma, J. and Jiang, J. (2010a). Detection and identification of faults in npp instruments using kernel principle component analysis. Journal of Engineering for Gas Turbines and Power, 134, 321-325.
    • (2010) Journal of Engineering for Gas Turbines and Power , vol.134 , pp. 321-325
    • Ma, J.1    Jiang, J.2
  • 20
    • 80053266496 scopus 로고    scopus 로고
    • Fault detection and identification in NPP instruments using kernel principal component analysis
    • Ma, J. and Jiang, J. (2010b). Fault detection and identification in NPP instruments using kernel principal component analysis. 18th International Conference on Nuclear Engineering, 1, 765-771.
    • (2010) 18th International Conference on Nuclear Engineering , vol.1 , pp. 765-771
    • Ma, J.1    Jiang, J.2
  • 24
    • 52449086100 scopus 로고    scopus 로고
    • Fault isolation with principal components structured models for a gas turbine
    • Mina, J., Verde, C., Sanchez-Parra, M., and Ortega, F. (2008). Fault isolation with principal components structured models for a gas turbine. American Control Conference, 4268-4273.
    • (2008) American Control Conference , pp. 4268-4273
    • Mina, J.1    Verde, C.2    Sanchez-Parra, M.3    Ortega, F.4
  • 25
    • 84865506083 scopus 로고    scopus 로고
    • Nonlinear fault diagnosis of jet engines by using a multiple model-based approach
    • Naderi, E., Meskin, N., and Khorasani, K. (2011). Nonlinear fault diagnosis of jet engines by using a multiple model-based approach. ASME Turbo Expo, GT2011-45143.
    • (2011) ASME Turbo Expo , pp. GT2011-GT45143
    • Naderi, E.1    Meskin, N.2    Khorasani, K.3
  • 26
    • 80955172043 scopus 로고    scopus 로고
    • Nonlinear fault diagnosis of jet engines by using a multiple model-based approach
    • Naderi, E., Meskin, N., and Khorasani, K. (2012). Nonlinear fault diagnosis of jet engines by using a multiple model-based approach. Journal of Engineering for Gas Turbines and Power, 134(1), 011602.
    • (2012) Journal of Engineering for Gas Turbines and Power , vol.134 , Issue.1 , pp. 011602
    • Naderi, E.1    Meskin, N.2    Khorasani, K.3
  • 27
    • 85106600538 scopus 로고
    • Symplectic nonlinear component analysis
    • Parra, L. (1995). Symplectic nonlinear component analysis. Neural and Synthetic, 437-443.
    • (1995) Neural and Synthetic , pp. 437-443
    • Parra, L.1
  • 28
    • 0000184052 scopus 로고    scopus 로고
    • Statistical independence and novelty detection with information preserving nonlinear maps
    • Parra, L., Deco, G., and Miesbach, S. (1996). Statistical independence and novelty detection with information preserving nonlinear maps. Neural Computation, 2, 268-279.
    • (1996) Neural Computation , vol.2 , pp. 268-279
    • Parra, L.1    Deco, G.2    Miesbach, S.3
  • 30
    • 84883642378 scopus 로고    scopus 로고
    • Multiple-model based sensor fault diagnosis using hybrid kalman filter approach for nonlinear gas turbine engines
    • Pourbabaee, B., Meskin, N., and Khorasani, K. (2013). Multiple-model based sensor fault diagnosis using hybrid kalman filter approach for nonlinear gas turbine engines. American Control Conference, 4717-4723.
    • (2013) American Control Conference , pp. 4717-4723
    • Pourbabaee, B.1    Meskin, N.2    Khorasani, K.3
  • 32
    • 84923357254 scopus 로고    scopus 로고
    • Adaptive sliding mode observer for sensor fault diagnosis of an industrial gas turbine
    • Rahme, S. and Meskin, N. (2015). Adaptive sliding mode observer for sensor fault diagnosis of an industrial gas turbine. Control Engineering Practice, 38, 57-74.
    • (2015) Control Engineering Practice , vol.38 , pp. 57-74
    • Rahme, S.1    Meskin, N.2
  • 35
    • 84889672582 scopus 로고    scopus 로고
    • Fault detection and isolation of a dual spool gas turbine engine using dynamic neural networks and multiple model approach
    • Sadough Vanini, Z. N., Khorasani, K., and Meskin, N. (2014a). Fault detection and isolation of a dual spool gas turbine engine using dynamic neural networks and multiple model approach. Information Sciences, 259, 234-251.
    • (2014) Information Sciences , vol.259 , pp. 234-251
    • Sadough Vanini, Z.N.1    Khorasani, K.2    Meskin, N.3
  • 36
    • 84900022471 scopus 로고    scopus 로고
    • Multiple-model sensor and components fault diagnosis in gas turbine engines using autoassociative neural networks
    • Sadough Vanini, Z. N., Meskin, N., and Khorasani, K. (2014b). Multiple-model sensor and components fault diagnosis in gas turbine engines using autoassociative neural networks. Journal of Engineering for Gas Turbines and Power, 136(9), 091603.
    • (2014) Journal of Engineering for Gas Turbines and Power , vol.136 , Issue.9 , pp. 091603
    • Sadough Vanini, Z.N.1    Meskin, N.2    Khorasani, K.3
  • 38
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Scholkopf, B., Smola, A., and Muller, K. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput., 10(5), 1299-1319.
    • (1998) Neural Comput. , vol.10 , Issue.5 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.3
  • 41
    • 84907690680 scopus 로고    scopus 로고
    • A component map tuning method for performance prediction and diagnostics of gas turbine compressors
    • Tsoutsanis, E., Meskin, N., Benammar, M., and Khorasani, K. (2014). A component map tuning method for performance prediction and diagnostics of gas turbine compressors. Applied Energy, 135, 572-585.
    • (2014) Applied Energy , vol.135 , pp. 572-585
    • Tsoutsanis, E.1    Meskin, N.2    Benammar, M.3    Khorasani, K.4
  • 42
    • 84893049069 scopus 로고    scopus 로고
    • Realtime fault diagnosis for gas turbine generator system using extreme learning machine
    • Wong, P., Yang, Z., Vong, C., and Zhong, J. (2014). Realtime fault diagnosis for gas turbine generator system using extreme learning machine. Neorocomputing journal, 128, 249-257.
    • (2014) Neorocomputing Journal , vol.128 , pp. 249-257
    • Wong, P.1    Yang, Z.2    Vong, C.3    Zhong, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.