-
1
-
-
23344442258
-
Lessons learned from the U.S. nuclear power plant on-line monitoring programs
-
Hines, J. W. and Davis, E. "Lessons Learned from the U.S. Nuclear Power Plant On-Line Monitoring Programs." Progress in Nuclear Energy 46 (2005): 176-189.
-
(2005)
Progress in Nuclear Energy
, vol.46
, pp. 176-189
-
-
Hines, J.W.1
Davis, E.2
-
2
-
-
0031148456
-
Trends in the application of model-based fault detection and diagnosis of technical processes
-
Isermann, R. and Balle, P. "Trends in the Application of Model-Based Fault Detection and Diagnosis of Technical Processes." Control Engineering Practice 5 (1997): 709-719.
-
(1997)
Control Engineering Practice
, vol.5
, pp. 709-719
-
-
Isermann, R.1
Balle, P.2
-
5
-
-
77957364248
-
Applications of fault diagnosis in nuclear power plants: An introductory survey
-
Barcelona, Spain
-
Ma, J. and Jiang, J. "Applications of Fault Diagnosis in Nuclear Power Plants: An Introductory Survey." The 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes. Barcelona, Spain, 2009. 1150-1161.
-
(2009)
The 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes
, pp. 1150-1161
-
-
Ma, J.1
Jiang, J.2
-
6
-
-
0030530039
-
The process chemometrics approach to process monitoring and fault detection
-
Wise, B. M. and Gallagher, N. B. "The Process Chemometrics Approach to Process Monitoring and Fault Detection." Journal of Process Control 6 (1996): 329-348.
-
(1996)
Journal of Process Control
, vol.6
, pp. 329-348
-
-
Wise, B.M.1
Gallagher, N.B.2
-
7
-
-
0026113980
-
Nonlinear principal component analysis using autoassociative neural networks
-
Kramer, M. A. "Nonlinear Principal Component Analysis Using Autoassociative Neural Networks." AIChE Journal 37 (1991): 233-243.
-
(1991)
AIChE Journal
, vol.37
, pp. 233-243
-
-
Kramer, M.A.1
-
8
-
-
0043015539
-
Nonlinear principal component analysis-based on principal curves and neural networks
-
Dong, D. and McAvoy, T. J. "Nonlinear Principal Component Analysis-Based on principal Curves and Neural Networks ." Computers & Chemical Engineering 30 (1996): 65-78.
-
(1996)
Computers & Chemical Engineering
, vol.30
, pp. 65-78
-
-
Dong, D.1
McAvoy, T.J.2
-
9
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
Schölkopf, B., Smola, A. and Müller, K.-R. "Nonlinear Component Analysis as a Kernel Eigenvalue Problem." Neural Computation 10 (1998): 1299-1319.
-
(1998)
Neural Computation
, vol.10
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.2
Müller, K.-R.3
-
10
-
-
84898970836
-
Kernel PCA and De-noising in feature spaces
-
eds: Kearns, M. S., Solla, S. A. and Cohn, D. A. Cambridge, MA: MIT Press
-
Mika, S., et al. "Kernel PCA and De-Noising in Feature Spaces." Advances in Neural Information Processing Systems 11. eds: Kearns, M. S., Solla, S. A. and Cohn, D. A. Cambridge, MA: MIT Press, 1999. 536-542.
-
(1999)
Advances in Neural Information Processing Systems
, vol.11
, pp. 536-542
-
-
Mika, S.1
-
11
-
-
0346911568
-
Nonlinear process monitoring using kernel principal component analysis
-
Lee, J., et al. "Nonlinear Process Monitoring Using Kernel Principal Component Analysis." Chemical Engineering Science 59 (2004): 223-234.
-
(2004)
Chemical Engineering Science
, vol.59
, pp. 223-234
-
-
Lee, J.1
-
12
-
-
11144331636
-
Fault detection and identification of nonlinear processes based on Kernel PCA
-
Choi, S., et al. "Fault Detection and Identification of Nonlinear Processes Based on Kernel PCA." Chemometrics and Intelligent Laboratory Systems 75 (2005): 55-67.
-
(2005)
Chemometrics and Intelligent Laboratory Systems
, vol.75
, pp. 55-67
-
-
Choi, S.1
-
13
-
-
0030269512
-
Identification of faulty sensors using principal component analysis
-
Dunia, R., et al. "Identification of Faulty Sensors Using Principal Component Analysis." AIChE Journal 42 (1996): 2797-2812.
-
(1996)
AIChE Journal
, vol.42
, pp. 2797-2812
-
-
Dunia, R.1
-
14
-
-
79960903004
-
An optimized kernel principal component analysis algorithm for fault detection
-
Barcelona, Spain
-
Shi, H., Liu, J. and Zhang, Y. "An Optimized Kernel Principal Component Analysis Algorithm for Fault Detection." Proceedings of the 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes. Barcelona, Spain, 2009. 846-851.
-
(2009)
Proceedings of the 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes
, pp. 846-851
-
-
Shi, H.1
Liu, J.2
Zhang, Y.3
-
15
-
-
84902173149
-
"Robust De-noising by Kernel PCA" artificial neural networks - ICANN 2002
-
ed: Dorronsoro, J. R. London, UK: Springer-Verlag
-
Takahashi, T. and Kurita, T. "Robust De-noising by Kernel PCA."Artificial Neural Networks - ICANN 2002. ed: Dorronsoro, J. R., LNCS 2415. London, UK: Springer-Verlag, 2002. 739-744.
-
(2002)
LNCS
, vol.2415
, pp. 739-744
-
-
Takahashi, T.1
Kurita, T.2
-
16
-
-
0003408420
-
-
The MIT Press, Cambridge, MA
-
Schölkopf, B., and Smola, A. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. The MIT Press, Cambridge, MA, 2002.
-
(2002)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond
-
-
Schölkopf, B.1
Smola, A.2
-
17
-
-
0000874557
-
Theoretical foundations of the potential function method in pattern recognition learning
-
Aizerman, M., Braverman, E., and Rozonoer, L. "Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning." Automation and Remote Control 25 (1964): 821-837.
-
(1964)
Automation and Remote Control
, vol.25
, pp. 821-837
-
-
Aizerman, M.1
Braverman, E.2
Rozonoer, L.3
|