메뉴 건너뛰기




Volumn 136, Issue 9, 2014, Pages

Multiple-model sensor and components fault diagnosis in gas turbine engines using autoassociative neural networks

Author keywords

[No Author keywords available]

Indexed keywords

JET ENGINES; NEURAL NETWORKS; SENSORS;

EID: 84900022471     PISSN: 07424795     EISSN: 15288919     Source Type: Journal    
DOI: 10.1115/1.4027215     Document Type: Article
Times cited : (81)

References (41)
  • 2
    • 78650336757 scopus 로고    scopus 로고
    • Aircraft sensor and actuator fault detection, isolation, and accommodation
    • Kiyak, E., Kahvecioglu, A., and Caliskan, F., 2011, "Aircraft Sensor and Actuator Fault Detection, Isolation, and Accommodation," J. Aerosp. Eng., 24(1), pp. 46-58.
    • (2011) J. Aerosp. Eng , vol.24 , Issue.1 , pp. 46-58
    • Kiyak, E.1    Kahvecioglu, A.2    Caliskan, F.3
  • 3
    • 79954507840 scopus 로고    scopus 로고
    • Data-driven fault detection in aircraft engines with noisy sensor measurements
    • Sarkar, S., Jin, X., and Ray, A., 2011, "Data-Driven Fault Detection in Aircraft Engines With Noisy Sensor Measurements," ASME Eng. Gas Turbines Power, 133(8), p. 081602.
    • (2011) ASME Eng. Gas Turbines Power , vol.133 , Issue.8 , pp. 081602
    • Sarkar, S.1    Jin, X.2    Ray, A.3
  • 4
  • 5
    • 77951557860 scopus 로고    scopus 로고
    • A comparative study of nn and ekf based sfda schemes with application to a nonlinear uav model
    • Samy, I., Postlethwaite, I., and Gu, D., 2010, "A Comparative Study of NN and EKF Based SFDA Schemes With Application to a Nonlinear UAV Model," Int. J. Control, 83(5), pp. 1025-1043.
    • (2010) Int. J. Control , vol.83 , Issue.5 , pp. 1025-1043
    • Samy, I.1    Postlethwaite, I.2    Gu, D.3
  • 6
    • 84900029703 scopus 로고
    • Sensor failure detection, identification and accommodation in a system without sensor redundancy
    • January 1995, Reno, NV, AIAA Paper No. 95-0011
    • Neppach, C., and Casdorph, V., 1995, "Sensor Failure Detection, Identification and Accommodation in a System Without Sensor Redundancy," 33rd Aerospace Sciences Meeting & Exhibit, January 1995, Reno, NV, AIAA Paper No. 95-0011.
    • (1995) 33rd Aerospace Sciences Meeting & Exhibit
    • Neppach, C.1    Casdorph, V.2
  • 7
    • 79959845186 scopus 로고    scopus 로고
    • Gas turbine sensor validation through classification with artificial neural networks
    • Palm, T., Fast, M., and Thern, M., 2011, "Gas Turbine Sensor Validation Through Classification With Artificial Neural Networks," Appl. Energy, 88(11), pp. 3898-3904.
    • (2011) Appl. Energy , vol.88 , Issue.11 , pp. 3898-3904
    • Palm, T.1    Fast, M.2    Thern, M.3
  • 8
    • 2142650152 scopus 로고    scopus 로고
    • Gas-turbine diagnostics using artificial neural-networks for a high bypass ratio military turbofan engine
    • DOI 10.1016/j.apenergy.2003.10.002, PII S0306261903002022
    • Joly, R., Ogaji, S., Singh, R., and Probert, S., 2004, "Gas-Turbine Diagnostics Using Artificial Neural-Networks for a High Bypass Ratio Military Turbofan Engine," Appl. Energy, 78(4), pp. 397-418. (Pubitemid 38549799)
    • (2004) Applied Energy , vol.78 , Issue.4 , pp. 397-418
    • Joly, R.B.1    Ogaji, S.O.T.2    Singh, R.3    Probert, S.D.4
  • 9
    • 84959104098 scopus 로고    scopus 로고
    • A comparison between kalman filter and neural network approaches for sensor validation
    • San Diego, CA, July 29-31, AIAA Paper No. 96-3894
    • Napolitano, M., and Windon, D., 1996, "A Comparison Between Kalman Filter and Neural Network Approaches for Sensor Validation," AIAA Guidance, Navigation and Control Conference, San Diego, CA, July 29-31, AIAA Paper No. 96-3894.
    • (1996) AIAA Guidance, Navigation and Control Conference
    • Napolitano, M.1    Windon, D.2
  • 11
    • 0036538125 scopus 로고    scopus 로고
    • Multiple-sensor fault-diagnoses for a 2-shaft stationary gas-turbine
    • DOI 10.1016/S0306-2619(02)00015-6, PII S0306261902000156
    • Ogaji, S., Singh, R., and Probert, S., 2002, "Multiple-Sensor Fault-Diagnoses for a 2-Shaft Stationary Gas-Turbine," Appl. Energy, 71(4), pp. 321-339. (Pubitemid 34458637)
    • (2002) Applied Energy , vol.71 , Issue.4 , pp. 321-339
    • Ogaji, S.O.T.1    Singh, R.2    Probert, S.D.3
  • 12
    • 13944267843 scopus 로고    scopus 로고
    • Evolution strategy for gas-turbine fault-diagnoses
    • DOI 10.1016/j.apenergy.2004.07.003, PII S0306261904001023
    • Ogaji, S., Sampath, S., Marinai, L., Singh, R., and Probert, S., 2005, "Evolution Strategy for Gas-Turbine Fault-Diagnoses," Appl. Energy, 81(2), pp. 222-230. (Pubitemid 40274041)
    • (2005) Applied Energy , vol.81 , Issue.2 , pp. 222-230
    • Ogaji, S.O.T.1    Sampath, S.2    Marinai, L.3    Singh, R.4    Probert, S.D.5
  • 13
    • 2642561086 scopus 로고    scopus 로고
    • Prospects for aero gas-turbine diagnostics: A review
    • DOI 10.1016/j.apenergy.2003.10.005, PII S030626190300206X
    • Marinai, L., Probert, D., and Singh, R., 2004, "Prospects for Aero Gas-Turbine Diagnostics: A Review," Appl. Energy, 79(1), pp. 109-126. (Pubitemid 38728605)
    • (2004) Applied Energy , vol.79 , Issue.1 , pp. 109-126
    • Marinai, L.1    Probert, D.2    Singh, R.3
  • 14
    • 50349099054 scopus 로고    scopus 로고
    • Development and multi-utility of an ann model for an industrial gas turbine
    • Fast, M., Assadi, M., and De, S., 2009, "Development and Multi-Utility of an ANN Model for an Industrial Gas Turbine," Appl. Energy, 86(1), pp. 9-17.
    • (2009) Appl. Energy , vol.86 , Issue.1 , pp. 9-17
    • Fast, M.1    Assadi, M.2    De, S.3
  • 15
    • 84885672264 scopus 로고    scopus 로고
    • Feature-based fault detection of industrial gas turbines using neural networks
    • Rasaienia, A., Moshiri, B., and Moezzi, M., 2013, "Feature-Based Fault Detection of Industrial Gas Turbines Using Neural Networks," Turkish J. Elec. Eng. Comput. Sci., 21, pp. 1340-1350.
    • (2013) Turkish J. Elec. Eng. Comput. Sci , vol.21 , pp. 1340-1350
    • Rasaienia, A.1    Moshiri, B.2    Moezzi, M.3
  • 17
    • 45749141186 scopus 로고    scopus 로고
    • Fault detection and isolation in aircraft gas turbine engines. Part 1: Underlying concept
    • Gupta, S., Ray, A., Sarkar, S., and Yasar, M., 2008, "Fault Detection and Isolation in Aircraft Gas Turbine Engines. Part 1: Underlying Concept," J. Aerosp. Eng., Part G, 222(3), pp. 307-318.
    • (2008) J. Aerosp. Eng., Part G , vol.222 , Issue.3 , pp. 307-318
    • Gupta, S.1    Ray, A.2    Sarkar, S.3    Yasar, M.4
  • 18
    • 45749107071 scopus 로고    scopus 로고
    • Fault detection and isolation in aircraft gas turbine engines. Part 2: Validation on a simulation test bed
    • Sarkar, S., Yasar, M., Gupta, S., Ray, A., and Mukherjee, K., 2008, "Fault Detection and Isolation in Aircraft Gas Turbine Engines. Part 2: Validation on a Simulation Test Bed," J. Aerosp. Eng. Part G, 222(3), pp. 319-330.
    • (2008) J. Aerosp. Eng. Part G , vol.222 , Issue.3 , pp. 319-330
    • Sarkar, S.1    Yasar, M.2    Gupta, S.3    Ray, A.4    Mukherjee, K.5
  • 19
    • 79959845186 scopus 로고    scopus 로고
    • Gas turbine sensor validation through classification with artificial neural networks
    • Palme, T., Fast, M., and Thern, M., 2011, "Gas Turbine Sensor Validation Through Classification With Artificial Neural Networks," Thermal Power Eng., 88(11), pp. 3898-3904.
    • (2011) Thermal Power Eng , vol.88 , Issue.11 , pp. 3898-3904
    • Palme, T.1    Fast, M.2    Thern, M.3
  • 22
    • 4444329484 scopus 로고    scopus 로고
    • Identification of neural dynamic models for fault detection and isolation: The case of a real sugar evaporation process
    • Patan, K., and Parisini, T., 2005, "Identification of Neural Dynamic Models for Fault Detection and Isolation: The Case of a Real Sugar Evaporation Process," J. Process Control, 15(1), pp. 67-79.
    • (2005) J. Process Control , vol.15 , Issue.1 , pp. 67-79
    • Patan, K.1    Parisini, T.2
  • 23
    • 0030677976 scopus 로고    scopus 로고
    • Identification of a class of nonlinear systems using dynamic neural network structures
    • Houston, TX, June 9-12
    • Yazdizadeh, A., and Khorasani, K., 1997, "Identification of a Class of Nonlinear Systems Using Dynamic Neural Network Structures," International Conference on Neural Networks, Houston, TX, June 9-12, pp. 194-198.
    • (1997) International Conference on Neural Networks , pp. 194-198
    • Yazdizadeh, A.1    Khorasani, K.2
  • 24
    • 0036707312 scopus 로고    scopus 로고
    • Adaptive time delay neural network structures for nonlinear system identification
    • DOI 10.1016/S0925-2312(01)00589-6, PII S0925231201005896
    • Yazdizadeh, A., and Khorasani, K., 2002, "Adaptive Time Delay Neural Network Structures for Nonlinear System Identification," Neurocomputing, 47(1-4), pp. 207-240. (Pubitemid 36230875)
    • (2002) Neurocomputing , vol.47 , pp. 207-240
    • Yazdizadeh, A.1    Khorasani, K.2
  • 25
  • 26
    • 84889672582 scopus 로고    scopus 로고
    • Fault detection and isolation of a dual spool gas turbine engine using dynamic neural networks and multiple model approach
    • Sadough Vanini, Z. N., Khorasani, K., and Meskin, N., 2013, "Fault Detection and Isolation of a Dual Spool Gas Turbine Engine Using Dynamic Neural Networks and Multiple Model Approach," Inform. Sci., 259, pp. 234-251.
    • (2013) Inform. Sci , vol.259 , pp. 234-251
    • Sadough Vanini, Z.N.1    Khorasani, K.2    Meskin, N.3
  • 27
    • 84871747362 scopus 로고    scopus 로고
    • A multiple model-based approach for fault diagnosis of jet engines
    • Meskin, N., Naderi, E., and Khorasani, K., 2013, "A Multiple Model-Based Approach for Fault Diagnosis of Jet Engines," IEEE Trans. Control Syst. Technol., 21(1), pp. 254-262.
    • (2013) IEEE Trans. Control Syst. Technol , vol.21 , Issue.1 , pp. 254-262
    • Meskin, N.1    Naderi, E.2    Khorasani, K.3
  • 28
    • 80955172043 scopus 로고    scopus 로고
    • Nonlinear fault diagnosis of jet engines by using a multiple model-based approach
    • Naderi, E., Meskin, N., and Khorasani, K., 2012, "Nonlinear Fault Diagnosis of Jet Engines by Using a Multiple Model-Based Approach," ASME J. Eng. Gas Turbines Power, 134(1), p. 011602.
    • (2012) ASME J. Eng. Gas Turbines Power , vol.134 , Issue.1 , pp. 011602
    • Naderi, E.1    Meskin, N.2    Khorasani, K.3
  • 33
    • 0037277015 scopus 로고    scopus 로고
    • Model-based sensor validation for a turbofan engine using autoassociative neural networks
    • Guo, T., Mattern, D., Jaw, L., and Chen, C., 2003, "Model-Based Sensor Validation for a Turbofan Engine Using Autoassociative Neural Networks," Int. J. Smart Eng. Syst. Design, 5(1), pp. 21-32.
    • (2003) Int. J. Smart Eng. Syst. Design , vol.5 , Issue.1 , pp. 21-32
    • Guo, T.1    Mattern, D.2    Jaw, L.3    Chen, C.4
  • 34
    • 0026849990 scopus 로고    scopus 로고
    • Autoassociative neural networks
    • Kramer, M. A., 1998, "Autoassociative Neural Networks," Comput. Chem. Eng., 16(4), pp. 313-328.
    • (1998) Comput. Chem. Eng , vol.16 , Issue.4 , pp. 313-328
    • Kramer, M.A.1
  • 36
    • 0028419875 scopus 로고
    • Fault diagnosis in gas turbines using a model-based technique
    • Merrington, G. L., 1994, "Fault Diagnosis in Gas Turbines Using a Model-Based Technique," ASME J. Eng. Gas Turbines Power, 116(2), pp. 374-380.
    • (1994) ASME J. Eng. Gas Turbines Power , vol.116 , Issue.2 , pp. 374-380
    • Merrington, G.L.1
  • 39
    • 10244219947 scopus 로고    scopus 로고
    • A generic approach for gas turbine adaptive modeling
    • Visser, W., Kogenhop, O., and Oostveen, M., 2004, "A Generic Approach for Gas Turbine Adaptive Modeling," ASME J. Eng. Gas Turbines Power, 126(2), pp. 334-341.
    • (2004) ASME J. Eng. Gas Turbines Power , vol.126 , Issue.2 , pp. 334-341
    • Visser, W.1    Kogenhop, O.2    Oostveen, M.3
  • 40
    • 84899999112 scopus 로고    scopus 로고
    • PROOSIS, EA Internacional, Madrid, Spain
    • PROOSIS, 2014, "Ecosimpro and PROOSIS Simulation Tools," EA Internacional, Madrid, Spain, http://www.ecosimpro.com/
    • (2014) Ecosimpro and PROOSIS Simulation Tools
  • 41
    • 0036638194 scopus 로고    scopus 로고
    • Application of autoassociative neural network on gas-path sensor data validation
    • Lu, P., and Hsu, T., 2002, "Application of Autoassociative Neural Network on Gas-Path Sensor Data Validation," J. Propul. Power, 18(4), pp. 879-888. (Pubitemid 34924318)
    • (2002) Journal of Propulsion and Power , vol.18 , Issue.4 , pp. 879-888
    • Lu, P.-J.1    Hsu, T.-C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.