-
1
-
-
0035041144
-
Neural-network-based sensor validation for gas turbine test bed analysis
-
DOI 10.1243/0959651011539196
-
Zedda, M., and Singh, R., 2001, "Neural-Network-Based Sensor Validation for Gas Turbine Test Bed Analysis," Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng, 215(1), pp. 47-56. (Pubitemid 32394215)
-
(2001)
Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering
, vol.215
, Issue.1
, pp. 47-56
-
-
Zedda, M.1
Singh, R.2
-
2
-
-
78650336757
-
Aircraft sensor and actuator fault detection, isolation, and accommodation
-
Kiyak, E., Kahvecioglu, A., and Caliskan, F., 2011, "Aircraft Sensor and Actuator Fault Detection, Isolation, and Accommodation," J. Aerosp. Eng., 24(1), pp. 46-58.
-
(2011)
J. Aerosp. Eng
, vol.24
, Issue.1
, pp. 46-58
-
-
Kiyak, E.1
Kahvecioglu, A.2
Caliskan, F.3
-
3
-
-
79954507840
-
Data-driven fault detection in aircraft engines with noisy sensor measurements
-
Sarkar, S., Jin, X., and Ray, A., 2011, "Data-Driven Fault Detection in Aircraft Engines With Noisy Sensor Measurements," ASME Eng. Gas Turbines Power, 133(8), p. 081602.
-
(2011)
ASME Eng. Gas Turbines Power
, vol.133
, Issue.8
, pp. 081602
-
-
Sarkar, S.1
Jin, X.2
Ray, A.3
-
4
-
-
85088344746
-
Online learning rbf neural networks for sensor validation
-
Monterey, CA, August 5-8, AIAA Paper No. 2002-4996
-
Sheng, C. G. W., Napolitano, M., and Fravolini, M., 2002, "Online Learning RBF Neural Networks for Sensor Validation," AIAA Guidance Navigation and Control Conference, Monterey, CA, August 5-8, AIAA Paper No. 2002-4996.
-
(2002)
AIAA Guidance Navigation and Control Conference
-
-
Sheng, C.G.W.1
Napolitano, M.2
Fravolini, M.3
-
5
-
-
77951557860
-
A comparative study of nn and ekf based sfda schemes with application to a nonlinear uav model
-
Samy, I., Postlethwaite, I., and Gu, D., 2010, "A Comparative Study of NN and EKF Based SFDA Schemes With Application to a Nonlinear UAV Model," Int. J. Control, 83(5), pp. 1025-1043.
-
(2010)
Int. J. Control
, vol.83
, Issue.5
, pp. 1025-1043
-
-
Samy, I.1
Postlethwaite, I.2
Gu, D.3
-
6
-
-
84900029703
-
Sensor failure detection, identification and accommodation in a system without sensor redundancy
-
January 1995, Reno, NV, AIAA Paper No. 95-0011
-
Neppach, C., and Casdorph, V., 1995, "Sensor Failure Detection, Identification and Accommodation in a System Without Sensor Redundancy," 33rd Aerospace Sciences Meeting & Exhibit, January 1995, Reno, NV, AIAA Paper No. 95-0011.
-
(1995)
33rd Aerospace Sciences Meeting & Exhibit
-
-
Neppach, C.1
Casdorph, V.2
-
7
-
-
79959845186
-
Gas turbine sensor validation through classification with artificial neural networks
-
Palm, T., Fast, M., and Thern, M., 2011, "Gas Turbine Sensor Validation Through Classification With Artificial Neural Networks," Appl. Energy, 88(11), pp. 3898-3904.
-
(2011)
Appl. Energy
, vol.88
, Issue.11
, pp. 3898-3904
-
-
Palm, T.1
Fast, M.2
Thern, M.3
-
8
-
-
2142650152
-
Gas-turbine diagnostics using artificial neural-networks for a high bypass ratio military turbofan engine
-
DOI 10.1016/j.apenergy.2003.10.002, PII S0306261903002022
-
Joly, R., Ogaji, S., Singh, R., and Probert, S., 2004, "Gas-Turbine Diagnostics Using Artificial Neural-Networks for a High Bypass Ratio Military Turbofan Engine," Appl. Energy, 78(4), pp. 397-418. (Pubitemid 38549799)
-
(2004)
Applied Energy
, vol.78
, Issue.4
, pp. 397-418
-
-
Joly, R.B.1
Ogaji, S.O.T.2
Singh, R.3
Probert, S.D.4
-
9
-
-
84959104098
-
A comparison between kalman filter and neural network approaches for sensor validation
-
San Diego, CA, July 29-31, AIAA Paper No. 96-3894
-
Napolitano, M., and Windon, D., 1996, "A Comparison Between Kalman Filter and Neural Network Approaches for Sensor Validation," AIAA Guidance, Navigation and Control Conference, San Diego, CA, July 29-31, AIAA Paper No. 96-3894.
-
(1996)
AIAA Guidance, Navigation and Control Conference
-
-
Napolitano, M.1
Windon, D.2
-
10
-
-
62949156710
-
-
Ph.D. thesis, West Virginia University, Morgantown, WV
-
An, Y., 1998, "A Design of Fault Tolerant Flight Control Systems for Sensor and Actuator Failures Using On-Line Learning Neural Networks," Ph.D. thesis, West Virginia University, Morgantown, WV.
-
(1998)
A Design of Fault Tolerant Flight Control Systems for Sensor and Actuator Failures Using On-Line Learning Neural Networks
-
-
An, Y.1
-
11
-
-
0036538125
-
Multiple-sensor fault-diagnoses for a 2-shaft stationary gas-turbine
-
DOI 10.1016/S0306-2619(02)00015-6, PII S0306261902000156
-
Ogaji, S., Singh, R., and Probert, S., 2002, "Multiple-Sensor Fault-Diagnoses for a 2-Shaft Stationary Gas-Turbine," Appl. Energy, 71(4), pp. 321-339. (Pubitemid 34458637)
-
(2002)
Applied Energy
, vol.71
, Issue.4
, pp. 321-339
-
-
Ogaji, S.O.T.1
Singh, R.2
Probert, S.D.3
-
12
-
-
13944267843
-
Evolution strategy for gas-turbine fault-diagnoses
-
DOI 10.1016/j.apenergy.2004.07.003, PII S0306261904001023
-
Ogaji, S., Sampath, S., Marinai, L., Singh, R., and Probert, S., 2005, "Evolution Strategy for Gas-Turbine Fault-Diagnoses," Appl. Energy, 81(2), pp. 222-230. (Pubitemid 40274041)
-
(2005)
Applied Energy
, vol.81
, Issue.2
, pp. 222-230
-
-
Ogaji, S.O.T.1
Sampath, S.2
Marinai, L.3
Singh, R.4
Probert, S.D.5
-
13
-
-
2642561086
-
Prospects for aero gas-turbine diagnostics: A review
-
DOI 10.1016/j.apenergy.2003.10.005, PII S030626190300206X
-
Marinai, L., Probert, D., and Singh, R., 2004, "Prospects for Aero Gas-Turbine Diagnostics: A Review," Appl. Energy, 79(1), pp. 109-126. (Pubitemid 38728605)
-
(2004)
Applied Energy
, vol.79
, Issue.1
, pp. 109-126
-
-
Marinai, L.1
Probert, D.2
Singh, R.3
-
14
-
-
50349099054
-
Development and multi-utility of an ann model for an industrial gas turbine
-
Fast, M., Assadi, M., and De, S., 2009, "Development and Multi-Utility of an ANN Model for an Industrial Gas Turbine," Appl. Energy, 86(1), pp. 9-17.
-
(2009)
Appl. Energy
, vol.86
, Issue.1
, pp. 9-17
-
-
Fast, M.1
Assadi, M.2
De, S.3
-
15
-
-
84885672264
-
Feature-based fault detection of industrial gas turbines using neural networks
-
Rasaienia, A., Moshiri, B., and Moezzi, M., 2013, "Feature-Based Fault Detection of Industrial Gas Turbines Using Neural Networks," Turkish J. Elec. Eng. Comput. Sci., 21, pp. 1340-1350.
-
(2013)
Turkish J. Elec. Eng. Comput. Sci
, vol.21
, pp. 1340-1350
-
-
Rasaienia, A.1
Moshiri, B.2
Moezzi, M.3
-
16
-
-
84900032979
-
-
CRC, Boca Raton, FL
-
Ganguli, R., 2013, Gas Turbine Diagnostics, Signal Processing and Fault Isolation, CRC, Boca Raton, FL.
-
(2013)
Gas Turbine Diagnostics, Signal Processing and Fault Isolation
-
-
Ganguli, R.1
-
17
-
-
45749141186
-
Fault detection and isolation in aircraft gas turbine engines. Part 1: Underlying concept
-
Gupta, S., Ray, A., Sarkar, S., and Yasar, M., 2008, "Fault Detection and Isolation in Aircraft Gas Turbine Engines. Part 1: Underlying Concept," J. Aerosp. Eng., Part G, 222(3), pp. 307-318.
-
(2008)
J. Aerosp. Eng., Part G
, vol.222
, Issue.3
, pp. 307-318
-
-
Gupta, S.1
Ray, A.2
Sarkar, S.3
Yasar, M.4
-
18
-
-
45749107071
-
Fault detection and isolation in aircraft gas turbine engines. Part 2: Validation on a simulation test bed
-
Sarkar, S., Yasar, M., Gupta, S., Ray, A., and Mukherjee, K., 2008, "Fault Detection and Isolation in Aircraft Gas Turbine Engines. Part 2: Validation on a Simulation Test Bed," J. Aerosp. Eng. Part G, 222(3), pp. 319-330.
-
(2008)
J. Aerosp. Eng. Part G
, vol.222
, Issue.3
, pp. 319-330
-
-
Sarkar, S.1
Yasar, M.2
Gupta, S.3
Ray, A.4
Mukherjee, K.5
-
19
-
-
79959845186
-
Gas turbine sensor validation through classification with artificial neural networks
-
Palme, T., Fast, M., and Thern, M., 2011, "Gas Turbine Sensor Validation Through Classification With Artificial Neural Networks," Thermal Power Eng., 88(11), pp. 3898-3904.
-
(2011)
Thermal Power Eng
, vol.88
, Issue.11
, pp. 3898-3904
-
-
Palme, T.1
Fast, M.2
Thern, M.3
-
20
-
-
4444238174
-
Fault diagnosis with dynamic neural structure and application to a turbo charger
-
Espoo, Finland, June 13-16
-
Ayoubi, M., 1994, "Fault Diagnosis With Dynamic Neural Structure and Application to a Turbo Charger," International Symposium on Fault Detection, Supervision and Safety for Technical Proceesses (SAFEPROCESS'94), Espoo, Finland, June 13-16, pp. 618-623.
-
(1994)
International Symposium on Fault Detection, Supervision and Safety for Technical Proceesses (SAFEPROCESS'94)
, pp. 618-623
-
-
Ayoubi, M.1
-
21
-
-
84900025053
-
-
ASME Paper No. GT2010-23586
-
Mohammadi, R., Naderi, E., Khorasani, K., and Hashtrudi-Zad, S., 2010, "Fault Diagnosis of Gas Turbine Engines by Using Dynamic Neural Networks," ASME Paper No. GT2010-23586.
-
(2010)
Fault Diagnosis of Gas Turbine Engines by Using Dynamic Neural Networks
-
-
Mohammadi, R.1
Naderi, E.2
Khorasani, K.3
Hashtrudi-Zad, S.4
-
22
-
-
4444329484
-
Identification of neural dynamic models for fault detection and isolation: The case of a real sugar evaporation process
-
Patan, K., and Parisini, T., 2005, "Identification of Neural Dynamic Models for Fault Detection and Isolation: The Case of a Real Sugar Evaporation Process," J. Process Control, 15(1), pp. 67-79.
-
(2005)
J. Process Control
, vol.15
, Issue.1
, pp. 67-79
-
-
Patan, K.1
Parisini, T.2
-
23
-
-
0030677976
-
Identification of a class of nonlinear systems using dynamic neural network structures
-
Houston, TX, June 9-12
-
Yazdizadeh, A., and Khorasani, K., 1997, "Identification of a Class of Nonlinear Systems Using Dynamic Neural Network Structures," International Conference on Neural Networks, Houston, TX, June 9-12, pp. 194-198.
-
(1997)
International Conference on Neural Networks
, pp. 194-198
-
-
Yazdizadeh, A.1
Khorasani, K.2
-
24
-
-
0036707312
-
Adaptive time delay neural network structures for nonlinear system identification
-
DOI 10.1016/S0925-2312(01)00589-6, PII S0925231201005896
-
Yazdizadeh, A., and Khorasani, K., 2002, "Adaptive Time Delay Neural Network Structures for Nonlinear System Identification," Neurocomputing, 47(1-4), pp. 207-240. (Pubitemid 36230875)
-
(2002)
Neurocomputing
, vol.47
, pp. 207-240
-
-
Yazdizadeh, A.1
Khorasani, K.2
-
25
-
-
84888062344
-
Dynamic neural network-based fault diagnosis of jet engines
-
Tayarani-Bathaie, S. S., Sadough Vanini, Z. N., and Khorasani, K., 2013, "Dynamic Neural Network-Based Fault Diagnosis of Jet Engines," Neurocompting, 125, pp. 153-165.
-
(2013)
Neurocompting
, vol.125
, pp. 153-165
-
-
Tayarani-Bathaie, S.S.1
Sadough Vanini, Z.N.2
Khorasani, K.3
-
26
-
-
84889672582
-
Fault detection and isolation of a dual spool gas turbine engine using dynamic neural networks and multiple model approach
-
Sadough Vanini, Z. N., Khorasani, K., and Meskin, N., 2013, "Fault Detection and Isolation of a Dual Spool Gas Turbine Engine Using Dynamic Neural Networks and Multiple Model Approach," Inform. Sci., 259, pp. 234-251.
-
(2013)
Inform. Sci
, vol.259
, pp. 234-251
-
-
Sadough Vanini, Z.N.1
Khorasani, K.2
Meskin, N.3
-
27
-
-
84871747362
-
A multiple model-based approach for fault diagnosis of jet engines
-
Meskin, N., Naderi, E., and Khorasani, K., 2013, "A Multiple Model-Based Approach for Fault Diagnosis of Jet Engines," IEEE Trans. Control Syst. Technol., 21(1), pp. 254-262.
-
(2013)
IEEE Trans. Control Syst. Technol
, vol.21
, Issue.1
, pp. 254-262
-
-
Meskin, N.1
Naderi, E.2
Khorasani, K.3
-
28
-
-
80955172043
-
Nonlinear fault diagnosis of jet engines by using a multiple model-based approach
-
Naderi, E., Meskin, N., and Khorasani, K., 2012, "Nonlinear Fault Diagnosis of Jet Engines by Using a Multiple Model-Based Approach," ASME J. Eng. Gas Turbines Power, 134(1), p. 011602.
-
(2012)
ASME J. Eng. Gas Turbines Power
, vol.134
, Issue.1
, pp. 011602
-
-
Naderi, E.1
Meskin, N.2
Khorasani, K.3
-
29
-
-
84865492985
-
-
ASME Paper No. GT2010-23442
-
Naderi, E., Meskin, N., and Khorasani, K., 2010, "Fault Diagnosis of Jet Engine by Using a Multiple Model-Based Approach," ASME Paper No. GT2010- 23442.
-
(2010)
Fault Diagnosis of Jet Engine by Using A Multiple Model-Based Approach
-
-
Naderi, E.1
Meskin, N.2
Khorasani, K.3
-
30
-
-
0031996958
-
Use of autoassociative neural networks for signal validation
-
Hines, J., and Uhrig, R., 1998, "Use of Autoassociative Neural Networks for Signal Validation," J. Intell. Robotic Syst., 21(2) pp. 143-154. (Pubitemid 128509481)
-
(1998)
Journal of Intelligent and Robotic Systems: Theory and Applications
, vol.21
, Issue.2
, pp. 143-154
-
-
Hines, J.W.1
Uhrig, R.E.2
Wrest, D.J.3
-
31
-
-
77958127789
-
Self- recovery method based on auto-associative neural network for intelligent sensors
-
Jinan, China, July 7-9
-
Guo-Jian, H., Gui-Xiong, L., Geng-Xin, C., and Tie-Qun, C., 2010, "Self- Recovery Method Based on Auto-Associative Neural Network for Intelligent Sensors," 8th World Congress on Intelligent Control and Automation (WCICA), Jinan, China, July 7-9, pp. 6918-6922.
-
(2010)
8th World Congress on Intelligent Control and Automation (WCICA)
, pp. 6918-6922
-
-
Guo-Jian, H.1
Gui-Xiong, L.2
Geng-Xin, C.3
Tie-Qun, C.4
-
32
-
-
84900006422
-
Performance study of enhanced auto-associative neural networks for sensor fault detection
-
Paris, October 18-19
-
Najafi, M., Culp, C., and Langari, R., 2004, "Performance Study of Enhanced Auto-Associative Neural Networks for Sensor Fault Detection," 4th International Conference for Enhanced Building Operations, Paris, October 18-19.
-
(2004)
4th International Conference for Enhanced Building Operations
-
-
Najafi, M.1
Culp, C.2
Langari, R.3
-
33
-
-
0037277015
-
Model-based sensor validation for a turbofan engine using autoassociative neural networks
-
Guo, T., Mattern, D., Jaw, L., and Chen, C., 2003, "Model-Based Sensor Validation for a Turbofan Engine Using Autoassociative Neural Networks," Int. J. Smart Eng. Syst. Design, 5(1), pp. 21-32.
-
(2003)
Int. J. Smart Eng. Syst. Design
, vol.5
, Issue.1
, pp. 21-32
-
-
Guo, T.1
Mattern, D.2
Jaw, L.3
Chen, C.4
-
34
-
-
0026849990
-
Autoassociative neural networks
-
Kramer, M. A., 1998, "Autoassociative Neural Networks," Comput. Chem. Eng., 16(4), pp. 313-328.
-
(1998)
Comput. Chem. Eng
, vol.16
, Issue.4
, pp. 313-328
-
-
Kramer, M.A.1
-
35
-
-
84865492985
-
-
ASME Paper No. GT2010-23442
-
Meskin, N., Naderi, E., and Khorasani, K., 2010, "Fault Diagnosis of Jet Engines by Using a Multiple Model-Based Approach," ASME Paper No. GT2010-23442.
-
(2010)
Fault Diagnosis of Jet Engines by Using A Multiple Model-Based Approach
-
-
Meskin, N.1
Naderi, E.2
Khorasani, K.3
-
36
-
-
0028419875
-
Fault diagnosis in gas turbines using a model-based technique
-
Merrington, G. L., 1994, "Fault Diagnosis in Gas Turbines Using a Model-Based Technique," ASME J. Eng. Gas Turbines Power, 116(2), pp. 374-380.
-
(1994)
ASME J. Eng. Gas Turbines Power
, vol.116
, Issue.2
, pp. 374-380
-
-
Merrington, G.L.1
-
37
-
-
33746176484
-
A modular code for real time dynamic simulation of gas turbines in simulink
-
DOI 10.1115/1.2132383
-
Camporeale, S. M., Fortunato, B., and Mastrovito, M., 2006, "A Modular Code for Real Time Dynamic Simulation of Gas Turbines in SIMULINK," ASME J. Eng. Gas Turbines Power, 128(3), pp. 506-517. (Pubitemid 44083613)
-
(2006)
Journal of Engineering for Gas Turbines and Power
, vol.128
, Issue.3
, pp. 506-517
-
-
Camporeale, S.M.1
Fortunato, B.2
Mastrovito, M.3
-
38
-
-
84865492985
-
-
ASME Paper No. GT2011-45143
-
Meskin, N., Naderi, E., and Khorasani, K., 2010, "Nonlinear Fault Diagnosis of Jet Engines by Using a Multiple Model-Based Approach," ASME Paper No. GT2011- 45143.
-
(2010)
Nonlinear Fault Diagnosis of Jet Engines by Using A Multiple Model-Based Approach
-
-
Meskin, N.1
Naderi, E.2
Khorasani, K.3
-
39
-
-
10244219947
-
A generic approach for gas turbine adaptive modeling
-
Visser, W., Kogenhop, O., and Oostveen, M., 2004, "A Generic Approach for Gas Turbine Adaptive Modeling," ASME J. Eng. Gas Turbines Power, 126(2), pp. 334-341.
-
(2004)
ASME J. Eng. Gas Turbines Power
, vol.126
, Issue.2
, pp. 334-341
-
-
Visser, W.1
Kogenhop, O.2
Oostveen, M.3
-
40
-
-
84899999112
-
-
PROOSIS, EA Internacional, Madrid, Spain
-
PROOSIS, 2014, "Ecosimpro and PROOSIS Simulation Tools," EA Internacional, Madrid, Spain, http://www.ecosimpro.com/
-
(2014)
Ecosimpro and PROOSIS Simulation Tools
-
-
-
41
-
-
0036638194
-
Application of autoassociative neural network on gas-path sensor data validation
-
Lu, P., and Hsu, T., 2002, "Application of Autoassociative Neural Network on Gas-Path Sensor Data Validation," J. Propul. Power, 18(4), pp. 879-888. (Pubitemid 34924318)
-
(2002)
Journal of Propulsion and Power
, vol.18
, Issue.4
, pp. 879-888
-
-
Lu, P.-J.1
Hsu, T.-C.2
|