메뉴 건너뛰기




Volumn 128, Issue , 2014, Pages 249-257

Real-time fault diagnosis for gas turbine generator systems using extreme learning machine

Author keywords

Extreme learning machine; Gas turbine generator system; Kernel principal component analysis; Real time fault diagnosis; Time domain statistical features; Wavelet packet transform

Indexed keywords

DATA HANDLING; FAILURE ANALYSIS; GAS PLANTS; GAS TURBINE POWER PLANTS; GAS TURBINES; KNOWLEDGE ACQUISITION; LEARNING ALGORITHMS; PRINCIPAL COMPONENT ANALYSIS; REAL TIME SYSTEMS; SUPPORT VECTOR MACHINES; TIME DOMAIN ANALYSIS; TURBOGENERATORS; WAVELET ANALYSIS; WAVELET TRANSFORMS;

EID: 84893049069     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.03.059     Document Type: Article
Times cited : (152)

References (34)
  • 1
    • 84881422479 scopus 로고    scopus 로고
    • A novel real-time fault diagnostic system for steam turbine generator set by using strata hierarchical artificial neural network
    • Yan C.F., Zhang H. A novel real-time fault diagnostic system for steam turbine generator set by using strata hierarchical artificial neural network. Energy Power Eng. 2009, 1:7-16.
    • (2009) Energy Power Eng. , vol.1 , pp. 7-16
    • Yan, C.F.1    Zhang, H.2
  • 2
    • 0036487053 scopus 로고    scopus 로고
    • An online condition monitoring and diagnosis system for feed rolls in the plate mill
    • Jeng J.J., Wei C.Y. An online condition monitoring and diagnosis system for feed rolls in the plate mill. J. Manuf. Sci. Eng. 2002, 124:52-57.
    • (2002) J. Manuf. Sci. Eng. , vol.124 , pp. 52-57
    • Jeng, J.J.1    Wei, C.Y.2
  • 3
    • 0000235347 scopus 로고    scopus 로고
    • The application of expert systems and neural networks to gas turbine prognostics and diagnostics
    • DePold H.R., Gass F.D. The application of expert systems and neural networks to gas turbine prognostics and diagnostics. J. Eng. Gas Turbines Power 1999, 121:607-612.
    • (1999) J. Eng. Gas Turbines Power , vol.121 , pp. 607-612
    • DePold, H.R.1    Gass, F.D.2
  • 4
    • 0030291875 scopus 로고    scopus 로고
    • A parallel distributed knowledge base system for turbine generator fault diagnosis
    • Wang X., Yang S.Z. A parallel distributed knowledge base system for turbine generator fault diagnosis. Artif. Intell. Eng. 1996, 10:335-341.
    • (1996) Artif. Intell. Eng. , vol.10 , pp. 335-341
    • Wang, X.1    Yang, S.Z.2
  • 6
    • 0033310511 scopus 로고    scopus 로고
    • Using abductive machine learning for online vibration monitoring of turbo molecular pumps
    • Abdel-Aal R.E., Raashid M. Using abductive machine learning for online vibration monitoring of turbo molecular pumps. Shock Vib. 1999, 6:253-265.
    • (1999) Shock Vib. , vol.6 , pp. 253-265
    • Abdel-Aal, R.E.1    Raashid, M.2
  • 7
    • 60849131716 scopus 로고    scopus 로고
    • Faulted gear identification of a rotating machinery based on wavelet transform and artificial neural network
    • Wu J.D., Chan J.J. Faulted gear identification of a rotating machinery based on wavelet transform and artificial neural network. Expert Syst. Appl. 2009, 36:8862-8875.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 8862-8875
    • Wu, J.D.1    Chan, J.J.2
  • 8
    • 33750503791 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble
    • Hu Q., He Z.G. Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble. Mech. Syst. Signal Process. 2007, 21:688-705.
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 688-705
    • Hu, Q.1    He, Z.G.2
  • 9
    • 28744446722 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery based on multi-class support vector machines
    • Yang B.S., Han T. Fault diagnosis of rotating machinery based on multi-class support vector machines. J. Mech. Sci. Technol. 2004, 19:846-859.
    • (2004) J. Mech. Sci. Technol. , vol.19 , pp. 846-859
    • Yang, B.S.1    Han, T.2
  • 10
    • 33846850208 scopus 로고    scopus 로고
    • Intelligent condition monitoring of a gearbox using artificial neural network
    • Rafiee J., Arvani F. Intelligent condition monitoring of a gearbox using artificial neural network. Mech. Syst. Signal Process. 2007, 21:174-1754.
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 174-1754
    • Rafiee, J.1    Arvani, F.2
  • 11
    • 33750481498 scopus 로고    scopus 로고
    • Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors
    • Widodo A., Han T. Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors. Expert Syst. Appl. 2007, 32:299-312.
    • (2007) Expert Syst. Appl. , vol.32 , pp. 299-312
    • Widodo, A.1    Han, T.2
  • 12
    • 33845623677 scopus 로고    scopus 로고
    • Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors
    • Widodo A., Yang B.S. Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors. Mech. Syst. Signal Process. 2007, 33:241-250.
    • (2007) Mech. Syst. Signal Process. , vol.33 , pp. 241-250
    • Widodo, A.1    Yang, B.S.2
  • 13
    • 36048939640 scopus 로고    scopus 로고
    • New clustering algorithm-based fault diagnosis using compensation distance evaluation technique
    • Lei Y.G., He Z.G., Zi Y.Y., Chen X.F. New clustering algorithm-based fault diagnosis using compensation distance evaluation technique. Mech. Syst. Signal Process. 2008, 22:419-435.
    • (2008) Mech. Syst. Signal Process. , vol.22 , pp. 419-435
    • Lei, Y.G.1    He, Z.G.2    Zi, Y.Y.3    Chen, X.F.4
  • 14
    • 33846798101 scopus 로고    scopus 로고
    • Subspace-based gearbox condition monitoring by kernel principal component analysis
    • He Q.B., Kong F. Subspace-based gearbox condition monitoring by kernel principal component analysis. Mech. Syst. Signal Process. 2007, 21:1755-1772.
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 1755-1772
    • He, Q.B.1    Kong, F.2
  • 15
    • 33748076461 scopus 로고    scopus 로고
    • A GA-based feature selection and parameters optimization for support vector machines
    • Huang C.L., Wang C.J. A GA-based feature selection and parameters optimization for support vector machines. Expert Syst. Appl. 2006, 31:231-240.
    • (2006) Expert Syst. Appl. , vol.31 , pp. 231-240
    • Huang, C.L.1    Wang, C.J.2
  • 16
    • 2942560415 scopus 로고    scopus 로고
    • Artificial neural networks and genetic algorithms for gear fault detection
    • Samanta B. Artificial neural networks and genetic algorithms for gear fault detection. Mech. Syst. Signal Process. 2004, 18:1273-1282.
    • (2004) Mech. Syst. Signal Process. , vol.18 , pp. 1273-1282
    • Samanta, B.1
  • 17
    • 78149404128 scopus 로고    scopus 로고
    • Fault dianosis of power electronic system based on fault gradation and neural network group
    • Ma C.C., Wang Y.Y. Fault dianosis of power electronic system based on fault gradation and neural network group. Neurocomputing 2007, 72(13-15):2909-2912.
    • (2007) Neurocomputing , vol.72 , Issue.13-15 , pp. 2909-2912
    • Ma, C.C.1    Wang, Y.Y.2
  • 18
    • 80052262780 scopus 로고    scopus 로고
    • Case-based expert system using wavelet packet transform and kernel-based feature manipulation for engine ignition system diagnosis
    • Vong C.M., Wong P.K., Ip W.F. Case-based expert system using wavelet packet transform and kernel-based feature manipulation for engine ignition system diagnosis. Eng. Appl. Artif. Intell. 2011, 24(7):1281-1294.
    • (2011) Eng. Appl. Artif. Intell. , vol.24 , Issue.7 , pp. 1281-1294
    • Vong, C.M.1    Wong, P.K.2    Ip, W.F.3
  • 19
    • 57649230902 scopus 로고    scopus 로고
    • Application of SVM and SVD technique based on EMD to the fault diagnosis of the rotating machinery
    • Cheng J., Yu D., Tang J., Yang Y. Application of SVM and SVD technique based on EMD to the fault diagnosis of the rotating machinery. Shock Vib. 2009, 16:89-98.
    • (2009) Shock Vib. , vol.16 , pp. 89-98
    • Cheng, J.1    Yu, D.2    Tang, J.3    Yang, Y.4
  • 20
    • 84893153680 scopus 로고    scopus 로고
    • Engine ignition signal diagnosis with wavelet packet transform and multi-class least squares support vector machines
    • Vong C.M., Wong P.K. Engine ignition signal diagnosis with wavelet packet transform and multi-class least squares support vector machines. Expert Syst. Appl. 2011, 21:2560-2574.
    • (2011) Expert Syst. Appl. , vol.21 , pp. 2560-2574
    • Vong, C.M.1    Wong, P.K.2
  • 21
    • 33845623677 scopus 로고    scopus 로고
    • Support vector machine in machine condition monitoring and fault diagnosis
    • Widodo A., Yang B.S. Support vector machine in machine condition monitoring and fault diagnosis. Mech. Syst. Signal Process. 2007, 33:241-250.
    • (2007) Mech. Syst. Signal Process. , vol.33 , pp. 241-250
    • Widodo, A.1    Yang, B.S.2
  • 22
    • 0942289503 scopus 로고    scopus 로고
    • Gear fault detection using artificial neural networks and support vector machines with genetic algorithms
    • Samanta B. Gear fault detection using artificial neural networks and support vector machines with genetic algorithms. Mech. Syst. Signal Process. 2004, 18:625-644.
    • (2004) Mech. Syst. Signal Process. , vol.18 , pp. 625-644
    • Samanta, B.1
  • 23
    • 78049528234 scopus 로고    scopus 로고
    • Fault diagnosis of ball bearings using machine learning methods
    • Kankar P.K., Satish C. Fault diagnosis of ball bearings using machine learning methods. Expert Syst. Appl. 2010, 38:1876-1886.
    • (2010) Expert Syst. Appl. , vol.38 , pp. 1876-1886
    • Kankar, P.K.1    Satish, C.2
  • 24
    • 34548035641 scopus 로고    scopus 로고
    • Rolling element bearings multi-fault classification based on the wavelet de-noising and support vector machine
    • Abbasion S., Rafsanjani A. Rolling element bearings multi-fault classification based on the wavelet de-noising and support vector machine. Mech. Syst. Signal Process. 2007, 21:2933-2945.
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 2933-2945
    • Abbasion, S.1    Rafsanjani, A.2
  • 25
    • 78649492473 scopus 로고    scopus 로고
    • Optimization method based extreme learning machine for classification
    • Huang G.B., Ding X.J., Zhou H.M. Optimization method based extreme learning machine for classification. Neurocomputing 2010, 74:155-163.
    • (2010) Neurocomputing , vol.74 , pp. 155-163
    • Huang, G.B.1    Ding, X.J.2    Zhou, H.M.3
  • 27
    • 10944272650 scopus 로고    scopus 로고
    • Extreme learning machine: a new learning scheme of feedforward neural networks
    • Proceedings of IEEE International Conference on Neural Networks
    • G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: a new learning scheme of feedforward neural networks, in: Proceedings of IEEE International Conference on Neural Networks, vol. 2, pp. 985-990, 2004.
    • (2004) , vol.2 , pp. 985-990
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 28
    • 79956090028 scopus 로고    scopus 로고
    • Application of extreme learning machine for series compensated transmission line protection
    • Malathi V., Marimuthu N.S., Baskar S., Ramar K. Application of extreme learning machine for series compensated transmission line protection. Eng. Appl. Artif. Intell. 2011, 24:880-887.
    • (2011) Eng. Appl. Artif. Intell. , vol.24 , pp. 880-887
    • Malathi, V.1    Marimuthu, N.S.2    Baskar, S.3    Ramar, K.4
  • 29
    • 46249100582 scopus 로고    scopus 로고
    • Multi-stage extreme learning machine for fault diagnosis on hydraulic tube tester
    • Hu X.F., Zhao Z., Wang S., Wang F.L., He D.K., Wu S.K. Multi-stage extreme learning machine for fault diagnosis on hydraulic tube tester. Neural Comput. Appl. 2008, 17:339-403.
    • (2008) Neural Comput. Appl. , vol.17 , pp. 339-403
    • Hu, X.F.1    Zhao, Z.2    Wang, S.3    Wang, F.L.4    He, D.K.5    Wu, S.K.6
  • 30
    • 73849131792 scopus 로고    scopus 로고
    • Multiway spectral clustering with out-of-sample extensions through weighted kernel PCA
    • Alzate C., Suykens J. Multiway spectral clustering with out-of-sample extensions through weighted kernel PCA. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32:335-347.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , pp. 335-347
    • Alzate, C.1    Suykens, J.2
  • 31
    • 66349127610 scopus 로고    scopus 로고
    • Data preprocessing and modelling of electronically-controlled automotive engine power performance using kernel principal components analysis and least squares support vector machines
    • Wong P.K., Vong C.M., Tam L.M., Li K. Data preprocessing and modelling of electronically-controlled automotive engine power performance using kernel principal components analysis and least squares support vector machines. Int. J. Vehicle Syst. Modelling Test. 2008, 3:312-330.
    • (2008) Int. J. Vehicle Syst. Modelling Test. , vol.3 , pp. 312-330
    • Wong, P.K.1    Vong, C.M.2    Tam, L.M.3    Li, K.4
  • 32
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.B., Zhu Q.Y., Siew C.K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70:489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 33
    • 84947145047 scopus 로고
    • A generalized inverse for matrices
    • Penrose R. A generalized inverse for matrices. Proc. Cambridge Philos. Soc. 1955, 51:406-413.
    • (1955) Proc. Cambridge Philos. Soc. , vol.51 , pp. 406-413
    • Penrose, R.1
  • 34
    • 60849087036 scopus 로고    scopus 로고
    • Statistics over features of ECG signals
    • Übeyli E. Statistics over features of ECG signals. Expert Syst. Appl. 2009, 36:8758-8767.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 8758-8767
    • Übeyli, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.