-
1
-
-
84876804736
-
The global distribution and burden of dengue
-
Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, et al. 2013. The global distribution and burden of dengue. Nature 496:504-7
-
(2013)
Nature
, vol.496
, pp. 504-507
-
-
Bhatt, S.1
Gething, P.W.2
Brady, O.J.3
Messina, J.P.4
Farlow, A.W.5
-
2
-
-
84973436381
-
Flaviviridae
-
ed. DM Knipe, P Howley Philadelphia: LippincottWilliams &Wilkins
-
Lindenbach BD, Murray CL, Thiel HJ, Rice CM. 2013. Flaviviridae. In Fields Virology, ed. DM Knipe, P Howley, pp. 712-46. Philadelphia: LippincottWilliams &Wilkins
-
(2013)
Fields Virology
, pp. 712-746
-
-
Lindenbach, B.D.1
Murray, C.L.2
Thiel, H.J.3
Rice, C.M.4
-
3
-
-
84937550619
-
Zika virus: Following the path of dengue and chikungunya
-
Musso D, Cao-Lormeau VM, Gubler DJ. 2015. Zika virus: following the path of dengue and chikungunya? Lancet 386:243-44
-
(2015)
Lancet
, vol.386
, pp. 243-244
-
-
Musso, D.1
Cao-Lormeau, V.M.2
Gubler, D.J.3
-
4
-
-
84928951064
-
Insect-specific flaviviruses: A systematic review of their discovery, host range, mode of transmission, superinfection exclusion potential and genomic organization
-
Blitvich BJ, Firth AE. 2015. Insect-specific flaviviruses: a systematic review of their discovery, host range, mode of transmission, superinfection exclusion potential and genomic organization. Viruses 7:1927-59
-
(2015)
Viruses
, vol.7
, pp. 1927-1959
-
-
Blitvich, B.J.1
Firth, A.E.2
-
5
-
-
35748929379
-
Dengue
-
Halstead SB. 2007. Dengue. Lancet 370:1644-52
-
(2007)
Lancet
, vol.370
, pp. 1644-1652
-
-
Halstead, S.B.1
-
6
-
-
18344387519
-
Structure of dengue virus: Implications for flavivirus organization, maturation, and fusion
-
Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, et al. 2002. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108:717-25
-
(2002)
Cell
, vol.108
, pp. 717-725
-
-
Kuhn, R.J.1
Zhang, W.2
Rossmann, M.G.3
Pletnev, S.V.4
Corver, J.5
-
7
-
-
0242574743
-
Visualization ofmembrane protein domains by cryo-electron microscopy of dengue virus
-
ZhangW, Chipman PR, Corver J, Johnson PR, Zhang Y, et al. 2003. Visualization ofmembrane protein domains by cryo-electron microscopy of dengue virus. Nat. Struct. Biol. 10:907-12
-
(2003)
Nat. Struct. Biol.
, vol.10
, pp. 907-912
-
-
Zhang, W.1
Chipman, P.R.2
Corver, J.3
Johnson, P.R.4
Zhang, Y.5
-
8
-
-
84872048730
-
Cryo-EM structure of the mature dengue virus at 3 5-A resolution
-
Zhang X, Ge P, Yu X, Brannan JM, Bi G, et al. 2013. Cryo-EM structure of the mature dengue virus at 3.5-A resolution. Nat. Struct. Mol. Biol. 20:105-10
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 105-110
-
-
Zhang, X.1
Ge, P.2
Yu, X.3
Brannan, J.M.4
Bi, G.5
-
10
-
-
41649101680
-
Functional entry of dengue virus into Aedes albopictus mosquito cells is dependent on clathrin-mediated endocytosis
-
Acosta EG, Castilla V, DamonteEB. 2008. Functional entry of dengue virus into Aedes albopictus mosquito cells is dependent on clathrin-mediated endocytosis. J. Gen. Virol. 89:474-84
-
(2008)
J. Gen. Virol.
, vol.89
, pp. 474-484
-
-
Acosta, E.G.1
Castilla, V.2
Damonte, E.B.3
-
11
-
-
70350719853
-
Alternative infectious entry pathways for dengue virus serotypes into mammalian cells
-
Acosta EG, Castilla V, Damonte EB. 2009. Alternative infectious entry pathways for dengue virus serotypes into mammalian cells. Cell Microbiol. 11:1533-49
-
(2009)
Cell Microbiol.
, vol.11
, pp. 1533-1549
-
-
Acosta, E.G.1
Castilla, V.2
Damonte, E.B.3
-
12
-
-
84866102237
-
Differential requirements in endocytic trafficking for penetration of dengue virus
-
Acosta EG, Castilla V, Damonte EB. 2012. Differential requirements in endocytic trafficking for penetration of dengue virus. PLOS ONE 7:e44835
-
(2012)
PLOS ONE
, vol.7
, pp. e44835
-
-
Acosta, E.G.1
Castilla, V.2
Damonte, E.B.3
-
13
-
-
34247637615
-
Rab 5 is required for the cellular entry of dengue and West Nile viruses
-
KrishnanMN, Sukumaran B, Pal U, Agaisse H, Murray JL, et al. 2007. Rab 5 is required for the cellular entry of dengue and West Nile viruses. J. Virol. 81:4881-85
-
(2007)
J. Virol.
, vol.81
, pp. 4881-4885
-
-
Krishnan, M.N.1
Sukumaran, B.2
Pal, U.3
Agaisse, H.4
Murray, J.L.5
-
14
-
-
47749122553
-
Endocytic pathway followed by dengue virus to infect the mosquito cell line C6/36 HT
-
Mosso C, Galvan-Mendoza IJ, Ludert JE, del Angel RM. 2008. Endocytic pathway followed by dengue virus to infect the mosquito cell line C6/36 HT. Virology 378:193-99
-
(2008)
Virology
, vol.378
, pp. 193-199
-
-
Mosso, C.1
Galvan-Mendoza, I.J.2
Ludert, J.E.3
Del Angel, R.M.4
-
15
-
-
58149265437
-
Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells
-
van der Schaar HM, RustMJ, Chen C, van der Ende-Metselaar H, Wilschut J, et al. 2008. Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. PLOS Pathog. 4:e1000244
-
(2008)
PLOS Pathog.
, vol.4
, pp. e1000244
-
-
Van Der Schaar, H.M.1
Rust, M.J.2
Chen, C.3
Van Der Ende-Metselaar, H.4
Wilschut, J.5
-
16
-
-
1642499388
-
Structure of the dengue virus envelope protein after membrane fusion
-
Modis Y, Ogata S, Clements D, Harrison SC. 2004. Structure of the dengue virus envelope protein after membrane fusion. Nature 427:313-19
-
(2004)
Nature
, vol.427
, pp. 313-319
-
-
Modis, Y.1
Ogata, S.2
Clements, D.3
Harrison, S.C.4
-
17
-
-
66149103151
-
Crystal structure of dengue virus type 1 envelope protein in the postfusion conformation and its implications for membrane fusion
-
Nayak V, Dessau M, Kucera K, Anthony K, Ledizet M, Modis Y. 2009. Crystal structure of dengue virus type 1 envelope protein in the postfusion conformation and its implications for membrane fusion. J. Virol. 83:4338-44
-
(2009)
J. Virol.
, vol.83
, pp. 4338-4344
-
-
Nayak, V.1
Dessau, M.2
Kucera, K.3
Anthony, K.4
Ledizet, M.5
Modis, Y.6
-
20
-
-
34247848008
-
The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner
-
Miller S, Kastner S, Krijnse-Locker J, Buhler S, Bartenschlager R. 2007. The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner. J. Biol. Chem. 282:8873-82
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 8873-8882
-
-
Miller, S.1
Kastner, S.2
Krijnse-Locker, J.3
Buhler, S.4
Bartenschlager, R.5
-
21
-
-
33646851580
-
Subcellular localization and membrane topology of the Dengue virus type 2 non-structural protein 4B
-
Miller S, Sparacio S, Bartenschlager R. 2006. Subcellular localization and membrane topology of the Dengue virus type 2 non-structural protein 4B. J. Biol. Chem. 281:8854-63
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 8854-8863
-
-
Miller, S.1
Sparacio, S.2
Bartenschlager, R.3
-
22
-
-
84875777404
-
Membrane topology and function of dengue virusNS2A protein
-
Xie X, Gayen S, Kang C, Yuan Z, Shi PY. 2013. Membrane topology and function of dengue virusNS2A protein. J. Virol. 87:4609-22
-
(2013)
J. Virol.
, vol.87
, pp. 4609-4622
-
-
Xie, X.1
Gayen, S.2
Kang, C.3
Yuan, Z.4
Shi, P.Y.5
-
23
-
-
77957201605
-
The endoplasmic reticulum provides the membrane platform for biogenesis of the flavivirus replication complex
-
Gillespie LK, Hoenen A, Morgan G, Mackenzie JM. 2010. The endoplasmic reticulum provides the membrane platform for biogenesis of the flavivirus replication complex. J. Virol. 84:10438-47
-
(2010)
J. Virol.
, vol.84
, pp. 10438-10447
-
-
Gillespie, L.K.1
Hoenen, A.2
Morgan, G.3
Mackenzie, J.M.4
-
24
-
-
64649097038
-
Composition and three-dimensional architecture of the dengue virus replication and assembly sites
-
Welsch S, Miller S, Romero-Brey I, Merz A, Bleck CK, et al. 2009. Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe 5:365-75
-
(2009)
Cell Host Microbe
, vol.5
, pp. 365-375
-
-
Welsch, S.1
Miller, S.2
Romero-Brey, I.3
Merz, A.4
Bleck, C.K.5
-
25
-
-
0029941322
-
Immunolocalization of the dengue virus nonstructural glycoprotein NS1 suggests a role in viral RNA replication
-
Mackenzie JM, Jones MK, Young PR. 1996. Immunolocalization of the dengue virus nonstructural glycoprotein NS1 suggests a role in viral RNA replication. Virology 220:232-40
-
(1996)
Virology
, vol.220
, pp. 232-240
-
-
Mackenzie, J.M.1
Jones, M.K.2
Young, P.R.3
-
26
-
-
84897546853
-
Ultrastructural characterization and three-dimensional architecture of replication sites in dengue virus-infected mosquito cells
-
Junjhon J, Pennington JG, Edwards TJ, Perera R, Lanman J, Kuhn RJ. 2014. Ultrastructural characterization and three-dimensional architecture of replication sites in dengue virus-infected mosquito cells. J. Virol. 88:4687-97
-
(2014)
J. Virol.
, vol.88
, pp. 4687-4697
-
-
Junjhon, J.1
Pennington, J.G.2
Edwards, T.J.3
Perera, R.4
Lanman, J.5
Kuhn, R.J.6
-
27
-
-
84878209731
-
Three-dimensional architecture of tick-borne encephalitis virus replication sites and trafficking of the replicated RNA
-
Miorin L, Romero-Brey I, Maiuri P, Hoppe S, Krijnse-Locker J, et al. 2013. Three-dimensional architecture of tick-borne encephalitis virus replication sites and trafficking of the replicated RNA. J. Virol. 87:6469-81
-
(2013)
J. Virol.
, vol.87
, pp. 6469-6481
-
-
Miorin, L.1
Romero-Brey, I.2
Maiuri, P.3
Hoppe, S.4
Krijnse-Locker, J.5
-
28
-
-
18744362727
-
Long-range RNA-RNA interactions circularize the dengue virus genome
-
Alvarez DE, Lodeiro MF, Luduena SJ, Pietrasanta LI, Gamarnik AV. 2005. Long-range RNA-RNA interactions circularize the dengue virus genome. J. Virol. 79:6631-43
-
(2005)
J. Virol.
, vol.79
, pp. 6631-6643
-
-
Alvarez, D.E.1
Lodeiro, M.F.2
Luduena, S.J.3
Pietrasanta, L.I.4
Gamarnik, A.V.5
-
29
-
-
33747344212
-
A 5- RNA element promotes dengue virus RNA synthesis on a circular genome
-
Filomatori CV, Lodeiro MF, Alvarez DE, Samsa MM, Pietrasanta L, Gamarnik AV. 2006. A 5- RNA element promotes dengue virus RNA synthesis on a circular genome. Genes Dev. 20:2238-49
-
(2006)
Genes Dev.
, vol.20
, pp. 2238-2249
-
-
Filomatori, C.V.1
Lodeiro, M.F.2
Alvarez, D.E.3
Samsa, M.M.4
Pietrasanta, L.5
Gamarnik, A.V.6
-
30
-
-
41349112304
-
Structure of the immature dengue virus at low pH primes proteolytic maturation
-
Yu IM, Zhang W, Holdaway HA, Li L, Kostyuchenko VA, et al. 2008. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319:1834-37
-
(2008)
Science
, vol.319
, pp. 1834-1837
-
-
Yu, I.M.1
Zhang, W.2
Holdaway, H.A.3
Li, L.4
Kostyuchenko, V.A.5
-
31
-
-
4043104128
-
Identification of the homotypic interaction domain of the core protein of dengue virus type 2
-
Wang SH, Syu WJ, Hu ST. 2004. Identification of the homotypic interaction domain of the core protein of dengue virus type 2. J. Gen. Virol. 85:2307-14
-
(2004)
J. Gen. Virol.
, vol.85
, pp. 2307-2314
-
-
Wang, S.H.1
Syu, W.J.2
Hu, S.T.3
-
32
-
-
0038617775
-
Flavivirus capsid is a dimeric α-helical protein
-
Jones CT, Ma L, Burgner JW, Groesch TD, Post CB, Kuhn RJ. 2003. Flavivirus capsid is a dimeric α-helical protein. J. Virol. 77:7143-49
-
(2003)
J. Virol.
, vol.77
, pp. 7143-7149
-
-
Jones, C.T.1
Ma, L.2
Burgner, J.W.3
Groesch, T.D.4
Post, C.B.5
Kuhn, R.J.6
-
33
-
-
1542723492
-
Solution structure of dengue virus capsid protein reveals another fold
-
Ma L, Jones CT, Groesch TD, Kuhn RJ, Post CB. 2004. Solution structure of dengue virus capsid protein reveals another fold. PNAS 101:3414-19
-
(2004)
PNAS
, vol.101
, pp. 3414-3419
-
-
Ma, L.1
Jones, C.T.2
Groesch, T.D.3
Kuhn, R.J.4
Post, C.B.5
-
34
-
-
3142611054
-
West Nile virus core protein; Tetramer structure and ribbon formation
-
Dokland T, Walsh M, Mackenzie JM, Khromykh AA, Ee KH, Wang S. 2004. West Nile virus core protein; tetramer structure and ribbon formation. Structure 12:1157-63
-
(2004)
Structure
, vol.12
, pp. 1157-1163
-
-
Dokland, T.1
Walsh, M.2
Mackenzie, J.M.3
Khromykh, A.A.4
Ee, K.H.5
Wang, S.6
-
35
-
-
84904694717
-
Maintenance of dimer conformation by the dengue virus core protein α4-α4- helix pair is critical for nucleocapsid formation and virus production
-
Teoh PG, Huang ZS, Pong WL, Chen PC, Wu HN. 2014. Maintenance of dimer conformation by the dengue virus core protein α4-α4- helix pair is critical for nucleocapsid formation and virus production. J. Virol. 88:7998-8015
-
(2014)
J. Virol.
, vol.88
, pp. 7998-8015
-
-
Teoh, P.G.1
Huang, Z.S.2
Pong, W.L.3
Chen, P.C.4
Wu, H.N.5
-
36
-
-
84879947276
-
Hydrophobic segment of dengue virus C protein Interaction with model membranes
-
Nemesio H, Palomares-Jerez MF, Villalain J. 2013. Hydrophobic segment of dengue virus C protein. Interaction with model membranes. Mol. Membr. Biol. 30:273-87
-
(2013)
Mol. Membr. Biol.
, vol.30
, pp. 273-287
-
-
Nemesio, H.1
Palomares-Jerez, M.F.2
Villalain, J.3
-
37
-
-
0030838369
-
A conserved internal hydrophobic domain mediates the stable membrane integration of the dengue virus capsid protein
-
Markoff L, Falgout B, Chang A. 1997. A conserved internal hydrophobic domain mediates the stable membrane integration of the dengue virus capsid protein. Virology 233:105-17
-
(1997)
Virology
, vol.233
, pp. 105-117
-
-
Markoff, L.1
Falgout, B.2
Chang, A.3
-
38
-
-
84856860540
-
Uncoupling cis-acting RNA elements from coding sequences revealed a requirement of the N-terminal region of dengue virus capsid protein in virus particle formation
-
Samsa MM, Mondotte JA, Caramelo JJ, Gamarnik AV. 2012. Uncoupling cis-acting RNA elements from coding sequences revealed a requirement of the N-terminal region of dengue virus capsid protein in virus particle formation. J. Virol. 86:1046-58
-
(2012)
J. Virol.
, vol.86
, pp. 1046-1058
-
-
Samsa, M.M.1
Mondotte, J.A.2
Caramelo, J.J.3
Gamarnik, A.V.4
-
39
-
-
0029684652
-
RNA binding properties of core protein of the flavivirus Kunjin
-
Khromykh AA, Westaway EG. 1996. RNA binding properties of core protein of the flavivirus Kunjin. Arch. Virol. 141:685-99
-
(1996)
Arch. Virol.
, vol.141
, pp. 685-699
-
-
Khromykh, A.A.1
Westaway, E.G.2
-
40
-
-
78650613867
-
Dephosphorylation of WestNile virus capsid protein enhances the processes of nucleocapsid assembly
-
Cheong YK, NgML. 2011. Dephosphorylation of WestNile virus capsid protein enhances the processes of nucleocapsid assembly. Microbes Infect. 13:76-84
-
(2011)
Microbes Infect.
, vol.13
, pp. 76-84
-
-
Cheong, Y.K.1
Ng, M.L.2
-
41
-
-
73449101533
-
Dengue virus capsid protein usurps lipid droplets for viral particle formation
-
Samsa MM, Mondotte JA, Iglesias NG, Assuncao-Miranda I, Barbosa-Lima G, et al. 2009. Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLOS Pathog. 5:e1000632
-
(2009)
PLOS Pathog.
, vol.5
, pp. e1000632
-
-
Samsa, M.M.1
Mondotte, J.A.2
Iglesias, N.G.3
Assuncao-Miranda, I.4
Barbosa-Lima, G.5
-
42
-
-
80051788479
-
RNAbinding property and RNA chaperone activity of dengue virus core protein and other viral RNA-interacting proteins
-
Pong WL, Huang ZS, Teoh PG, Wang CC, WuHN. 2011.RNAbinding property and RNA chaperone activity of dengue virus core protein and other viral RNA-interacting proteins. FEBS Lett. 585:2575-81
-
(2011)
FEBS Lett.
, vol.585
, pp. 2575-2581
-
-
Pong, W.L.1
Huang, Z.S.2
Teoh, P.G.3
Wang, C.C.4
Wu, H.N.5
-
43
-
-
39449097872
-
RNA chaperoning and intrinsic disorder in the core proteins of Flaviviridae
-
Ivanyi-Nagy R, Lavergne JP, Gabus C, Ficheux D, Darlix JL. 2008. RNA chaperoning and intrinsic disorder in the core proteins of Flaviviridae. Nucleic Acids Res. 36:712-25
-
(2008)
Nucleic Acids Res.
, vol.36
, pp. 712-725
-
-
Ivanyi-Nagy, R.1
Lavergne, J.P.2
Gabus, C.3
Ficheux, D.4
Darlix, J.L.5
-
44
-
-
39049131090
-
RNA chaperones, RNA annealers and RNA helicases
-
Rajkowitsch L, ChenD, Stampfl S, SemradK, Waldsich C, et al. 2007. RNA chaperones, RNA annealers and RNA helicases. RNA Biol. 4:118-30
-
(2007)
RNA Biol.
, vol.4
, pp. 118-130
-
-
Rajkowitsch, L.1
Chen, D.2
Stampfl, S.3
Semrad, K.4
Waldsich, C.5
-
45
-
-
0029163563
-
RNA chaperones and the RNA folding problem
-
Herschlag D. 1995. RNA chaperones and the RNA folding problem. J. Biol. Chem. 270:20871-74
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 20871-20874
-
-
Herschlag, D.1
-
46
-
-
84863877179
-
Core protein-mediated 5-3- annealing of the West Nile virus genomic RNA in vitro
-
Ivanyi-Nagy R, Darlix JL. 2012. Core protein-mediated 5-3- annealing of the West Nile virus genomic RNA in vitro. Virus Res. 167:226-35
-
(2012)
Virus Res.
, vol.167
, pp. 226-235
-
-
Ivanyi-Nagy, R.1
Darlix, J.L.2
-
47
-
-
0028146784
-
Processing of the intracellular form of theWestNile virus capsid protein by the viral NS2B-NS3 protease: An in vitro study
-
Yamshchikov VF, Compans RW. 1994. Processing of the intracellular form of theWestNile virus capsid protein by the viral NS2B-NS3 protease: an in vitro study. J. Virol. 68:5765-71
-
(1994)
J. Virol.
, vol.68
, pp. 5765-5771
-
-
Yamshchikov, V.F.1
Compans, R.W.2
-
48
-
-
0028304762
-
NS2B-3 proteinase-mediated processing in the yellow fever virus structural region: In vitro and in vivo studies
-
Amberg SM, Nestorowicz A, McCourt DW, Rice CM. 1994. NS2B-3 proteinase-mediated processing in the yellow fever virus structural region: in vitro and in vivo studies. J. Virol. 68:3794-802
-
(1994)
J. Virol.
, vol.68
, pp. 3794-3802
-
-
Amberg, S.M.1
Nestorowicz, A.2
McCourt, D.W.3
Rice, C.M.4
-
49
-
-
77950928603
-
A flavivirus signal peptide balances the catalytic activity of two proteases and thereby facilitates virus morphogenesis
-
Lobigs M, Lee E, Ng ML, Pavy M, Lobigs P. 2010. A flavivirus signal peptide balances the catalytic activity of two proteases and thereby facilitates virus morphogenesis. Virology 401:80-89
-
(2010)
Virology
, vol.401
, pp. 80-89
-
-
Lobigs, M.1
Lee, E.2
Ng, M.L.3
Pavy, M.4
Lobigs, P.5
-
50
-
-
0031935890
-
Signal peptidase cleavage at the flavivirus C-prM junction: Dependence on the viral NS2B-3 protease for efficient processing requires determinants in C, the signal peptide, and prM
-
Stocks CE, Lobigs M. 1998. Signal peptidase cleavage at the flavivirus C-prM junction: dependence on the viral NS2B-3 protease for efficient processing requires determinants in C, the signal peptide, and prM. J. Virol. 72:2141-49
-
(1998)
J. Virol.
, vol.72
, pp. 2141-2149
-
-
Stocks, C.E.1
Lobigs, M.2
-
51
-
-
0033986872
-
Mutagenesis of the signal sequence of yellow fever virus prM protein: Enhancement of signalase cleavage in vitro is lethal for virus production
-
Lee E, Stocks CE, Amberg SM, Rice CM, Lobigs M. 2000. Mutagenesis of the signal sequence of yellow fever virus prM protein: Enhancement of signalase cleavage in vitro is lethal for virus production. J. Virol. 74:24-32
-
(2000)
J. Virol.
, vol.74
, pp. 24-32
-
-
Lee, E.1
Stocks, C.E.2
Amberg, S.M.3
Rice, C.M.4
Lobigs, M.5
-
52
-
-
0345734203
-
Inefficient signalase cleavage promotes efficient nucleocapsid incorporation into budding flavivirus membranes
-
Lobigs M, Lee E. 2004. Inefficient signalase cleavage promotes efficient nucleocapsid incorporation into budding flavivirus membranes. J. Virol. 78:178-86
-
(2004)
J. Virol.
, vol.78
, pp. 178-186
-
-
Lobigs, M.1
Lee, E.2
-
53
-
-
33846232731
-
Structural analysis of viral nucleocapsids by subtraction of partial projections
-
Zhang Y, Kostyuchenko VA, Rossmann MG. 2007. Structural analysis of viral nucleocapsids by subtraction of partial projections. J. Struct. Biol. 157:356-64
-
(2007)
J. Struct. Biol.
, vol.157
, pp. 356-364
-
-
Zhang, Y.1
Kostyuchenko, V.A.2
Rossmann, M.G.3
-
54
-
-
0029888374
-
Recombinant subviral particles from tick-borne encephalitis virus are fusogenic and provide a model system for studying flavivirus envelope glycoprotein functions
-
Schalich J, Allison SL, Stiasny K, Mandl CW, Kunz C, Heinz FX. 1996. Recombinant subviral particles from tick-borne encephalitis virus are fusogenic and provide a model system for studying flavivirus envelope glycoprotein functions. J. Virol. 70:4549-57
-
(1996)
J. Virol.
, vol.70
, pp. 4549-4557
-
-
Schalich, J.1
Allison, S.L.2
Stiasny, K.3
Mandl, C.W.4
Kunz, C.5
Heinz, F.X.6
-
55
-
-
0035032324
-
Coupling between replication and packaging of flavivirus RNA: Evidence derived from the use of DNA-based full-length cDNA clones of Kunjin virus
-
Khromykh AA, Varnavski AN, Sedlak PL, Westaway EG. 2001. Coupling between replication and packaging of flavivirus RNA: evidence derived from the use of DNA-based full-length cDNA clones of Kunjin virus. J. Virol. 75:4633-40
-
(2001)
J. Virol.
, vol.75
, pp. 4633-4640
-
-
Khromykh, A.A.1
Varnavski, A.N.2
Sedlak, P.L.3
Westaway, E.G.4
-
56
-
-
33750690231
-
Translation of the flavivirus Kunjin NS3 gene in cis but not its RNA sequence or secondary structure is essential for efficient RNA packaging
-
Pijlman GP, Kondratieva N, Khromykh AA. 2006. Translation of the flavivirus Kunjin NS3 gene in cis but not its RNA sequence or secondary structure is essential for efficient RNA packaging. J. Virol. 80:11255-64
-
(2006)
J. Virol.
, vol.80
, pp. 11255-11264
-
-
Pijlman, G.P.1
Kondratieva, N.2
Khromykh, A.A.3
-
57
-
-
41149101538
-
Yellow fever virus NS3 plays an essential role in virus assembly independent of its known enzymatic functions
-
Patkar CG, Kuhn RJ. 2008. Yellow fever virus NS3 plays an essential role in virus assembly independent of its known enzymatic functions. J. Virol. 82:3342-52
-
(2008)
J. Virol.
, vol.82
, pp. 3342-3352
-
-
Patkar, C.G.1
Kuhn, R.J.2
-
58
-
-
84971482981
-
A prolinerich N-terminal region of the dengue virus NS3 is crucial for infectious particle production
-
Gebhard LG, Iglesias NG, Byk LA, Filomatori CV, De Maio FA, Gamarnik AV. 2016. A prolinerich N-terminal region of the dengue virus NS3 is crucial for infectious particle production. J. Virol. 90:5451-61
-
(2016)
J. Virol.
, vol.90
, pp. 5451-5461
-
-
Gebhard, L.G.1
Iglesias, N.G.2
Byk, L.A.3
Filomatori, C.V.4
De Maio, F.A.5
Gamarnik, A.V.6
-
59
-
-
0036232747
-
Mutations in the yellow fever virus nonstructural protein NS2A selectively block production of infectious particles
-
Kummerer BM, Rice CM. 2002. Mutations in the yellow fever virus nonstructural protein NS2A selectively block production of infectious particles. J. Virol. 76:4773-84
-
(2002)
J. Virol.
, vol.76
, pp. 4773-4784
-
-
Kummerer, B.M.1
Rice, C.M.2
-
60
-
-
84948988051
-
Dengue virus nonstructural protein 1 modulates infectious particle production via interaction with the structural proteins
-
Scaturro P, Cortese M, Chatel-Chaix L, Fischl W, Bartenschlager R. 2015. Dengue virus nonstructural protein 1 modulates infectious particle production via interaction with the structural proteins. PLOS Pathog. 11:e1005277
-
(2015)
PLOS Pathog.
, vol.11
, pp. e1005277
-
-
Scaturro, P.1
Cortese, M.2
Chatel-Chaix, L.3
Fischl, W.4
Bartenschlager, R.5
-
61
-
-
84923166254
-
Overlapping local and long-range RNA-RNA interactions modulate dengue virus genome cyclization and replication
-
de Borba L, Villordo SM, Iglesias NG, Filomatori CV, Gebhard LG, Gamarnik AV. 2015. Overlapping local and long-range RNA-RNA interactions modulate dengue virus genome cyclization and replication. J. Virol. 89:3430-37
-
(2015)
J. Virol.
, vol.89
, pp. 3430-3437
-
-
De Borba, L.1
Villordo, S.M.2
Iglesias, N.G.3
Filomatori, C.V.4
Gebhard, L.G.5
Gamarnik, A.V.6
-
62
-
-
59749084360
-
Genome cyclization as strategy for flavivirus RNA replication
-
Villordo SM, Gamarnik AV. 2009. Genome cyclization as strategy for flavivirus RNA replication. Virus Res. 139:230-39
-
(2009)
Virus Res.
, vol.139
, pp. 230-239
-
-
Villordo, S.M.1
Gamarnik, A.V.2
-
63
-
-
50349101877
-
The capsid-coding region hairpin element (cHP) is a critical determinant of dengue virus and West Nile virus RNA synthesis
-
Clyde K, Barrera J, Harris E. 2008. The capsid-coding region hairpin element (cHP) is a critical determinant of dengue virus and West Nile virus RNA synthesis. Virology 379:314-23
-
(2008)
Virology
, vol.379
, pp. 314-323
-
-
Clyde, K.1
Barrera, J.2
Harris, E.3
-
64
-
-
84878526763
-
Novel cis-acting element within the capsid-coding region enhances flavivirus viral-RNA replication by regulating genome cyclization
-
Liu ZY, Li XF, JiangT, Deng YQ, Zhao H, et al. 2013. Novel cis-acting element within the capsid-coding region enhances flavivirus viral-RNA replication by regulating genome cyclization. J. Virol. 87:6804-18
-
(2013)
J. Virol.
, vol.87
, pp. 6804-6818
-
-
Liu, Z.Y.1
Li, X.F.2
Jiang, T.3
Deng, Y.Q.4
Zhao, H.5
-
65
-
-
34249929993
-
Functional requirements of the yellow fever virus capsid protein
-
Patkar CG, Jones CT, Chang YH, Warrier R, Kuhn RJ. 2007. Functional requirements of the yellow fever virus capsid protein. J. Virol. 81:6471-81
-
(2007)
J. Virol.
, vol.81
, pp. 6471-6481
-
-
Patkar, C.G.1
Jones, C.T.2
Chang, Y.H.3
Warrier, R.4
Kuhn, R.J.5
-
66
-
-
0036118270
-
Capsid protein C of tick-borne encephalitis virus tolerates large internal deletions and is a favorable target for attenuation of virulence
-
Kofler RM, Heinz FX, Mandl CW. 2002. Capsid protein C of tick-borne encephalitis virus tolerates large internal deletions and is a favorable target for attenuation of virulence. J. Virol. 76:3534-43
-
(2002)
J. Virol.
, vol.76
, pp. 3534-3543
-
-
Kofler, R.M.1
Heinz, F.X.2
Mandl, C.W.3
-
67
-
-
34248202492
-
Attenuated dengue 2 viruses with deletions in capsid protein derived from an infectious full-length cDNA clone
-
ZhuW, Qin C, Chen S, Jiang T, YuM, et al. 2007. Attenuated dengue 2 viruses with deletions in capsid protein derived from an infectious full-length cDNA clone. Virus Res. 126:226-32
-
(2007)
Virus Res.
, vol.126
, pp. 226-232
-
-
Zhu, W.1
Qin, C.2
Chen, S.3
Jiang, T.4
Yu, M.5
-
68
-
-
66149154330
-
Helices α2 and α3 ofWest Nile virus capsid protein are dispensable for assembly of infectious virions
-
Schlick P, Taucher C, Schittl B, Tran JL, Kofler RM, et al. 2009. Helices α2 and α3 ofWest Nile virus capsid protein are dispensable for assembly of infectious virions. J. Virol. 83:5581-91
-
(2009)
J. Virol.
, vol.83
, pp. 5581-5591
-
-
Schlick, P.1
Taucher, C.2
Schittl, B.3
Tran, J.L.4
Kofler, R.M.5
-
69
-
-
0037213602
-
Spontaneous mutations restore the viability of tick-borne encephalitis virus mutants with large deletions in protein C
-
Kofler RM, Leitner A, O'Riordain G, Heinz FX, Mandl CW. 2003. Spontaneous mutations restore the viability of tick-borne encephalitis virus mutants with large deletions in protein C. J. Virol. 77:443-51
-
(2003)
J. Virol.
, vol.77
, pp. 443-451
-
-
Kofler, R.M.1
Leitner, A.2
O'Riordain, G.3
Heinz, F.X.4
Mandl, C.W.5
-
70
-
-
0026438869
-
Nuclear localization of dengue 2 virus core protein detected with monoclonal antibodies
-
Bulich R, Aaskov JG. 1992. Nuclear localization of dengue 2 virus core protein detected with monoclonal antibodies. J. Gen. Virol. 73(Pt. 11):2999-3003
-
(1992)
J. Gen. Virol.
, vol.73
, pp. 2999-3003
-
-
Bulich, R.1
Aaskov, J.G.2
-
71
-
-
0024318343
-
Detection of dengue 4 virus core protein in the nucleus I. A monoclonal antibody to dengue 4 virus reacts with the antigen in the nucleus and cytoplasm
-
Tadano M, Makino Y, Fukunaga T, Okuno Y, Fukai K. 1989. Detection of dengue 4 virus core protein in the nucleus. I. A monoclonal antibody to dengue 4 virus reacts with the antigen in the nucleus and cytoplasm. J. Gen. Virol. 70(Pt. 6):1409-15
-
(1989)
J. Gen. Virol
, vol.70
, pp. 1409-1415
-
-
Tadano, M.1
Makino, Y.2
Fukunaga, T.3
Okuno, Y.4
Fukai, K.5
-
72
-
-
0036932907
-
Intracellular localization and determination of a nuclear localization signal of the core protein of dengue virus
-
Wang SH, Syu WJ, Huang KJ, Lei HY, Yao CW, et al. 2002. Intracellular localization and determination of a nuclear localization signal of the core protein of dengue virus. J. Gen. Virol. 83:3093-102
-
(2002)
J. Gen. Virol.
, vol.83
, pp. 3093-3102
-
-
Wang, S.H.1
Syu, W.J.2
Huang, K.J.3
Lei, H.Y.4
Yao, C.W.5
-
73
-
-
72949113840
-
Nuclear localization of dengue virus capsid protein is required for DAXX interaction and apoptosis
-
Netsawang J, Noisakran S, Puttikhunt C, Kasinrerk W, WongwiwatW, et al. 2010. Nuclear localization of dengue virus capsid protein is required for DAXX interaction and apoptosis. Virus Res. 147:275-83
-
(2010)
Virus Res.
, vol.147
, pp. 275-283
-
-
Netsawang, J.1
Noisakran, S.2
Puttikhunt, C.3
Kasinrerk, W.4
Wongwiwat, W.5
-
74
-
-
84939777157
-
Dengue virus uses a non-canonical function of the host GBF1-Arf-COPI system for capsid protein accumulation on lipid droplets
-
Iglesias N, Mondotte JA, Byk LA, DeMaio FA, SamsaMM, et al. 2015. Dengue virus uses a non-canonical function of the host GBF1-Arf-COPI system for capsid protein accumulation on lipid droplets. Traffic 16:962-77
-
(2015)
Traffic
, vol.16
, pp. 962-977
-
-
Iglesias, N.1
Mondotte, J.A.2
Byk, L.A.3
DeMaio, F.A.4
Samsa, M.M.5
-
75
-
-
44649173963
-
Multiple regions in dengue virus capsid protein contribute to nuclear localization during virus infection
-
Sangiambut S, Keelapang P, Aaskov J, PuttikhuntC, Kasinrerk W, et al. 2008. Multiple regions in dengue virus capsid protein contribute to nuclear localization during virus infection. J. Gen. Virol. 89:1254-64
-
(2008)
J. Gen. Virol.
, vol.89
, pp. 1254-1264
-
-
Sangiambut, S.1
Keelapang, P.2
Aaskov, J.3
Puttikhunt, C.4
Kasinrerk, W.5
-
76
-
-
0034767341
-
Assembly and maturation of the flavivirus Kunjin virus appear to occur in the rough endoplasmic reticulum and along the secretory pathway, respectively
-
Mackenzie JM, Westaway EG. 2001. Assembly and maturation of the flavivirus Kunjin virus appear to occur in the rough endoplasmic reticulum and along the secretory pathway, respectively. J. Virol. 75:10787-99
-
(2001)
J. Virol.
, vol.75
, pp. 10787-10799
-
-
Mackenzie, J.M.1
Westaway, E.G.2
-
78
-
-
20044394203
-
Nuclear localization of Japanese encephalitis virus core protein enhances viral replication
-
Mori Y, Okabayashi T, Yamashita T, Zhao Z, Wakita T, et al. 2005. Nuclear localization of Japanese encephalitis virus core protein enhances viral replication. J. Virol. 79:3448-58
-
(2005)
J. Virol.
, vol.79
, pp. 3448-3458
-
-
Mori, Y.1
Okabayashi, T.2
Yamashita, T.3
Zhao, Z.4
Wakita, T.5
-
79
-
-
0031582633
-
Proteins C and NS4B of the flavivirus Kunjin translocate independently into the nucleus
-
Westaway EG, Khromykh AA, Kenney MT, Mackenzie JM, Jones MK. 1997. Proteins C and NS4B of the flavivirus Kunjin translocate independently into the nucleus. Virology 234:31-41
-
(1997)
Virology
, vol.234
, pp. 31-41
-
-
Westaway, E.G.1
Khromykh, A.A.2
Kenney, M.T.3
Mackenzie, J.M.4
Jones, M.K.5
-
80
-
-
70349124965
-
Specific interaction of capsid protein and importin-α/β influencesWest Nile virus production
-
Bhuvanakantham R, ChongMK, Ng ML. 2009. Specific interaction of capsid protein and importin-α/β influencesWest Nile virus production. Biochem. Biophys. Res. Commun. 389:63-69
-
(2009)
Biochem. Biophys. Res. Commun.
, vol.389
, pp. 63-69
-
-
Bhuvanakantham, R.1
Chong, M.K.2
Ng, M.L.3
-
81
-
-
77954955663
-
West Nile virus capsid protein interactionwith importin and HDM2 protein is regulated by protein kinase C-mediated phosphorylation
-
Bhuvanakantham R, Cheong YK, NgML. 2010. West Nile virus capsid protein interactionwith importin and HDM2 protein is regulated by protein kinase C-mediated phosphorylation. Microbes Infect. 12:615-25
-
(2010)
Microbes Infect.
, vol.12
, pp. 615-625
-
-
Bhuvanakantham, R.1
Cheong, Y.K.2
Ng, M.L.3
-
82
-
-
84862165670
-
The disordered N-terminal region of dengue virus capsid protein contains a lipid-droplet-binding motif
-
Martins IC, Gomes-Neto F, Faustino AF, Carvalho FA, Carneiro FA, et al. 2012. The disordered N-terminal region of dengue virus capsid protein contains a lipid-droplet-binding motif. Biochem. J. 444:405-15
-
(2012)
Biochem. J.
, vol.444
, pp. 405-415
-
-
Martins, I.C.1
Gomes-Neto, F.2
Faustino, A.F.3
Carvalho, F.A.4
Carneiro, F.A.5
-
83
-
-
84923345392
-
Understanding dengue virus capsid protein disordered N-terminus and pep14-23-based inhibition
-
Faustino AF, Guerra GM, Huber RG, Hollmann A, Domingues MM, et al. 2015. Understanding dengue virus capsid protein disordered N-terminus and pep14-23-based inhibition. ACS Chem. Biol. 10:517-26
-
(2015)
ACS Chem. Biol.
, vol.10
, pp. 517-526
-
-
Faustino, A.F.1
Guerra, G.M.2
Huber, R.G.3
Hollmann, A.4
Domingues, M.M.5
-
84
-
-
84857094659
-
Dengue virus capsid protein binding to hepatic lipid droplets (LD) is potassium ion dependent and is mediated by LD surface proteins
-
Carvalho FA, Carneiro FA, Martins IC, Assuncao-Miranda I, Faustino AF, et al. 2012. Dengue virus capsid protein binding to hepatic lipid droplets (LD) is potassium ion dependent and is mediated by LD surface proteins. J. Virol. 86:2096-108
-
(2012)
J. Virol.
, vol.86
, pp. 2096-2108
-
-
Carvalho, F.A.1
Carneiro, F.A.2
Martins, I.C.3
Assuncao-Miranda, I.4
Faustino, A.F.5
-
85
-
-
33748598240
-
The lipid-droplet proteome reveals that droplets are a protein-storage depot
-
Cermelli S, Guo Y, Gross SP, Welte MA. 2006. The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr. Biol. 16:1783-95
-
(2006)
Curr. Biol.
, vol.16
, pp. 1783-1795
-
-
Cermelli, S.1
Guo, Y.2
Gross, S.P.3
Welte, M.A.4
-
86
-
-
33646168160
-
Lipid droplets: A unified view of a dynamic organelle
-
Martin S, Parton RG. 2006. Lipid droplets: a unified view of a dynamic organelle. Nat. Rev. Mol. Cell Biol. 7:373-78
-
(2006)
Nat. Rev. Mol. Cell Biol.
, vol.7
, pp. 373-378
-
-
Martin, S.1
Parton, R.G.2
-
87
-
-
84861913952
-
Lipid droplets and cellular lipid metabolism
-
Walther TC, Farese RV Jr. 2012. Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem. 81:687-714
-
(2012)
Annu. Rev. Biochem.
, vol.81
, pp. 687-714
-
-
Walther, T.C.1
Farese, R.V.2
-
88
-
-
77949524635
-
Proteomic insights into an expanded cellular role for cytoplasmic lipid droplets
-
Hodges BD, Wu CC. 2010. Proteomic insights into an expanded cellular role for cytoplasmic lipid droplets. J. Lipid Res. 51:262-73
-
(2010)
J. Lipid Res.
, vol.51
, pp. 262-273
-
-
Hodges, B.D.1
Wu, C.C.2
-
89
-
-
84867654401
-
Emerging roles for lipid droplets in immunity and host-pathogen interactions
-
Saka HA, Valdivia R. 2012. Emerging roles for lipid droplets in immunity and host-pathogen interactions. Annu. Rev. Cell Dev. Biol. 28:411-37
-
(2012)
Annu. Rev. Cell Dev. Biol.
, vol.28
, pp. 411-437
-
-
Saka, H.A.1
Valdivia, R.2
-
90
-
-
75149134774
-
Contribution of macrophagemigration inhibitory factor to the pathogenesis of dengue virus infection
-
Assuncao-Miranda I, Amaral FA, Bozza FA, Fagundes CT, Sousa LP, et al. 2010. Contribution of macrophagemigration inhibitory factor to the pathogenesis of dengue virus infection. FASEB J. 24:218-28
-
(2010)
FASEB J.
, vol.24
, pp. 218-228
-
-
Assuncao-Miranda, I.1
Amaral, F.A.2
Bozza, F.A.3
Fagundes, C.T.4
Sousa, L.P.5
-
91
-
-
84906971635
-
Characterization of the mode of action of a potent dengue virus capsid inhibitor
-
Scaturro P, Trist IM, Paul D, Kumar A, Acosta EG, et al. 2014. Characterization of the mode of action of a potent dengue virus capsid inhibitor. J. Virol. 88:11540-55
-
(2014)
J. Virol.
, vol.88
, pp. 11540-11555
-
-
Scaturro, P.1
Trist, I.M.2
Paul, D.3
Kumar, A.4
Acosta, E.G.5
-
92
-
-
84901296162
-
Rab18 facilitates dengue virus infection by targeting fatty acid synthase to sites of viral replication
-
Tang WC, Lin RJ, Liao CL, Lin YL. 2014. Rab18 facilitates dengue virus infection by targeting fatty acid synthase to sites of viral replication. J. Virol. 88:6793-804
-
(2014)
J. Virol.
, vol.88
, pp. 6793-6804
-
-
Tang, W.C.1
Lin, R.J.2
Liao, C.L.3
Lin, Y.L.4
-
93
-
-
77958100661
-
Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis
-
Heaton NS, Perera R, BergerKL, Khadka S, Lacount DJ, et al. 2010. Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. PNAS 107:17345-50
-
(2010)
PNAS
, vol.107
, pp. 17345-17350
-
-
Heaton, N.S.1
Perera, R.2
Berger, K.L.3
Khadka, S.4
Lacount, D.J.5
-
94
-
-
78349237370
-
Dengue virus-induced autophagy regulates lipid metabolism
-
Heaton NS, Randall G. 2010. Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe 8:422-32
-
(2010)
Cell Host Microbe
, vol.8
, pp. 422-432
-
-
Heaton, N.S.1
Randall, G.2
-
95
-
-
84873031729
-
Inhibition of cellular autophagy deranges dengue virion maturation
-
Mateo R, Nagamine CM, Spagnolo J, Mendez E, Rahe M, et al. 2013. Inhibition of cellular autophagy deranges dengue virion maturation. J. Virol. 87:1312-21
-
(2013)
J. Virol.
, vol.87
, pp. 1312-1321
-
-
Mateo, R.1
Nagamine, C.M.2
Spagnolo, J.3
Mendez, E.4
Rahe, M.5
-
96
-
-
84856075144
-
Emerging role of lipid droplets in host/pathogen interactions
-
Herker E, Ott M. 2012. Emerging role of lipid droplets in host/pathogen interactions. J. Biol. Chem. 287:2280-87
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 2280-2287
-
-
Herker, E.1
Ott, M.2
-
98
-
-
0030218609
-
Characterization of cell lines allowing tightly regulated expression of hepatitis C virus core protein
-
Moradpour D, Englert C, Wakita T, Wands JR. 1996. Characterization of cell lines allowing tightly regulated expression of hepatitis C virus core protein. Virology 222:51-63
-
(1996)
Virology
, vol.222
, pp. 51-63
-
-
Moradpour, D.1
Englert, C.2
Wakita, T.3
Wands, J.R.4
-
99
-
-
11144357274
-
Hepatitis C virus core protein shows a cytoplasmic localization and associates to cellular lipid storage droplets
-
Barba G, Harper F, Harada T, Kohara M, Goulinet S, et al. 1997. Hepatitis C virus core protein shows a cytoplasmic localization and associates to cellular lipid storage droplets. PNAS 94:1200-5
-
(1997)
PNAS
, vol.94
, pp. 1200-1205
-
-
Barba, G.1
Harper, F.2
Harada, T.3
Kohara, M.4
Goulinet, S.5
-
100
-
-
0033880575
-
Sequence motifs required for lipid droplet association and protein stability are unique to the hepatitis C virus core protein
-
Hope RG, McLauchlan J. 2000. Sequence motifs required for lipid droplet association and protein stability are unique to the hepatitis C virus core protein. J. Gen. Virol. 81:1913-25
-
(2000)
J. Gen. Virol.
, vol.81
, pp. 1913-1925
-
-
Hope, R.G.1
McLauchlan, J.2
-
101
-
-
0036683052
-
Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets
-
McLauchlan J, Lemberg MK, Hope G, Martoglio B. 2002. Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets. EMBO J. 21:3980-88
-
(2002)
EMBO J.
, vol.21
, pp. 3980-3988
-
-
McLauchlan, J.1
Lemberg, M.K.2
Hope, G.3
Martoglio, B.4
-
102
-
-
37549005607
-
The lipid droplet binding domain of hepatitis C virus core protein is a major determinant for efficient virus assembly
-
Shavinskaya A, Boulant S, Penin F, McLauchlan J, Bartenschlager R. 2007. The lipid droplet binding domain of hepatitis C virus core protein is a major determinant for efficient virus assembly. J. Biol. Chem. 282:37158-69
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 37158-37169
-
-
Shavinskaya, A.1
Boulant, S.2
Penin, F.3
McLauchlan, J.4
Bartenschlager, R.5
-
103
-
-
34547592075
-
Disrupting the association of hepatitis C virus core proteinwith lipid droplets correlates with a loss in production of infectious virus
-
Boulant S, Targett-Adams P, McLauchlan J. 2007. Disrupting the association of hepatitis C virus core proteinwith lipid droplets correlates with a loss in production of infectious virus. J. Gen. Virol. 88:2204-13
-
(2007)
J. Gen. Virol.
, vol.88
, pp. 2204-2213
-
-
Boulant, S.1
Targett-Adams, P.2
McLauchlan, J.3
-
104
-
-
47649114826
-
Hepatitis C virus core protein induces lipid droplet redistribution in a microtubule-and dynein-dependent manner
-
Boulant S, Douglas MW, Moody L, Budkowska A, Targett-Adams P, McLauchlan J. 2008. Hepatitis C virus core protein induces lipid droplet redistribution in a microtubule-and dynein-dependent manner. Traffic 9:1268-82
-
(2008)
Traffic
, vol.9
, pp. 1268-1282
-
-
Boulant, S.1
Douglas, M.W.2
Moody, L.3
Budkowska, A.4
Targett-Adams, P.5
McLauchlan, J.6
-
105
-
-
34548316984
-
The lipid droplet is an important organelle for hepatitis C virus production
-
Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, et al. 2007. The lipid droplet is an important organelle for hepatitis C virus production. Nat. Cell Biol. 9:1089-97
-
(2007)
Nat. Cell Biol.
, vol.9
, pp. 1089-1097
-
-
Miyanari, Y.1
Atsuzawa, K.2
Usuda, N.3
Watashi, K.4
Hishiki, T.5
-
106
-
-
33746830410
-
Structural determinants that target the hepatitis C virus core protein to lipid droplets
-
Boulant S, Montserret R, Hope RG, Ratinier M, Targett-Adams P, et al. 2006. Structural determinants that target the hepatitis C virus core protein to lipid droplets. J. Biol. Chem. 281:22236-47
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 22236-22247
-
-
Boulant, S.1
Montserret, R.2
Hope, R.G.3
Ratinier, M.4
Targett-Adams, P.5
-
107
-
-
80055073369
-
Trafficking of hepatitisCvirus core protein during virus particle assembly
-
Counihan NA, Rawlinson SM, Lindenbach BD. 2011. Trafficking of hepatitisCvirus core protein during virus particle assembly. PLOS Pathog. 7:e1002302
-
(2011)
PLOS Pathog.
, vol.7
, pp. e1002302
-
-
Counihan, N.A.1
Rawlinson, S.M.2
Lindenbach, B.D.3
-
108
-
-
84919793281
-
The hepatitis C virus core protein inhibits adipose triglyceride lipase (ATGL)-mediated lipid mobilization and enhances the ATGL interaction with comparative gene identification 58 (CGI-58) and lipid droplets
-
Camus G, Schweiger M, Herker E, Harris C, Kondratowicz AS, et al. 2014. The hepatitis C virus core protein inhibits adipose triglyceride lipase (ATGL)-mediated lipid mobilization and enhances the ATGL interaction with comparative gene identification 58 (CGI-58) and lipid droplets. J. Biol. Chem. 289:35770-80
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 35770-35780
-
-
Camus, G.1
Schweiger, M.2
Herker, E.3
Harris, C.4
Kondratowicz, A.S.5
-
109
-
-
69449095908
-
Coatomer-dependent protein delivery to lipid droplets
-
Soni KG, Mardones GA, SougratR, SmirnovaE, JacksonCL, Bonifacino JS. 2009. Coatomer-dependent protein delivery to lipid droplets. J. Cell Sci. 122:1834-41
-
(2009)
J. Cell Sci.
, vol.122
, pp. 1834-1841
-
-
Soni, K.G.1
Mardones, G.A.2
Sougrat, R.3
Smirnova, E.4
Jackson, C.L.5
Bonifacino, J.S.6
-
110
-
-
44449095056
-
Functional genomic screen reveals genes involved in lipid-droplet formation and utilization
-
Guo Y, Walther TC, Rao M, Stuurman N, Goshima G, et al. 2008. Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 453:657-61
-
(2008)
Nature
, vol.453
, pp. 657-661
-
-
Guo, Y.1
Walther, T.C.2
Rao, M.3
Stuurman, N.4
Goshima, G.5
-
111
-
-
56849110119
-
COPI complex is a regulator of lipid homeostasis
-
Beller M, Sztalryd C, Southall N, Bell M, Jackle H, et al. 2008. COPI complex is a regulator of lipid homeostasis. PLOS Biol. 6:e292
-
(2008)
PLOS Biol.
, vol.6
, pp. e292
-
-
Beller, M.1
Sztalryd, C.2
Southall, N.3
Bell, M.4
Jackle, H.5
-
113
-
-
80052361705
-
Dengue virus capsid protein binds core histones and inhibits nucleosome formation in human liver cells
-
Colpitts TM, Barthel S, Wang P, Fikrig E. 2011. Dengue virus capsid protein binds core histones and inhibits nucleosome formation in human liver cells. PLOS ONE 6:e24365
-
(2011)
PLOS ONE
, vol.6
, pp. e24365
-
-
Colpitts, T.M.1
Barthel, S.2
Wang, P.3
Fikrig, E.4
-
114
-
-
0034761111
-
The heterogeneous nuclear ribonucleoprotein K (hnRNP K) interacts with dengue virus core protein
-
Chang CJ, Luh HW, Wang SH, Lin HJ, Lee SC, Hu ST. 2001. The heterogeneous nuclear ribonucleoprotein K (hnRNP K) interacts with dengue virus core protein. DNA Cell Biol. 20:569-77
-
(2001)
DNA Cell Biol.
, vol.20
, pp. 569-577
-
-
Chang, C.J.1
Luh, H.W.2
Wang, S.H.3
Lin, H.J.4
Lee, S.C.5
Hu, S.T.6
-
115
-
-
84888026992
-
Nucleolin interacts with the dengue virus capsid protein and plays a role in formation of infectious virus particles
-
Balinsky CA, Schmeisser H, Ganesan S, Singh K, Pierson TC, Zoon KC. 2013. Nucleolin interacts with the dengue virus capsid protein and plays a role in formation of infectious virus particles. J. Virol. 87:13094-106
-
(2013)
J. Virol.
, vol.87
, pp. 13094-13106
-
-
Balinsky, C.A.1
Schmeisser, H.2
Ganesan, S.3
Singh, K.4
Pierson, T.C.5
Zoon, K.C.6
-
116
-
-
84862814793
-
Dengue virus utilizes calcium modulating cyclophilinbinding ligand to subvert apoptosis
-
Li J, Huang R, Liao W, Chen Z, Zhang S. 2012. Dengue virus utilizes calcium modulating cyclophilinbinding ligand to subvert apoptosis. Biochem. Biophys. Res. Commun. 418:622-27
-
(2012)
Biochem. Biophys. Res. Commun.
, vol.418
, pp. 622-627
-
-
Li, J.1
Huang, R.2
Liao, W.3
Chen, Z.4
Zhang, S.5
-
117
-
-
0036917561
-
Induction of inflammation by West Nile virus capsid through the caspase-9 apoptotic pathway
-
Yang JS, Ramanathan MP, Muthumani K, Choo AY, Jin SH, et al. 2002. Induction of inflammation by West Nile virus capsid through the caspase-9 apoptotic pathway. Emerg. Infect. Dis. 8:1379-84
-
(2002)
Emerg. Infect. Dis.
, vol.8
, pp. 1379-1384
-
-
Yang, J.S.1
Ramanathan, M.P.2
Muthumani, K.3
Choo, A.Y.4
Jin, S.H.5
-
118
-
-
36949005877
-
West Nile virus capsid protein induces p53-mediated apoptosis via the sequestration of HDM2 to the nucleolus
-
Yang MR, Lee SR, Oh W, Lee EW, Yeh JY, et al. 2008. West Nile virus capsid protein induces p53-mediated apoptosis via the sequestration of HDM2 to the nucleolus. Cell Microbiol. 10:165-76
-
(2008)
Cell Microbiol.
, vol.10
, pp. 165-176
-
-
Yang, M.R.1
Lee, S.R.2
Oh, W.3
Lee, E.W.4
Yeh, J.Y.5
-
119
-
-
34848850994
-
West Nile virus-induced neuroinflammation: Glial infection and capsid protein-mediated neurovirulence
-
van Marle G, Antony J, Ostermann H, Dunham C, Hunt T, et al. 2007. West Nile virus-induced neuroinflammation: glial infection and capsid protein-mediated neurovirulence. J. Virol. 81:10933-49
-
(2007)
J. Virol.
, vol.81
, pp. 10933-10949
-
-
Van Marle, G.1
Antony, J.2
Ostermann, H.3
Dunham, C.4
Hunt, T.5
-
120
-
-
77954263501
-
Human Sec 3 protein is a novel transcriptional and translational repressor of flavivirus
-
Bhuvanakantham R, Li J, Tan TT, Ng ML. 2010. Human Sec 3 protein is a novel transcriptional and translational repressor of flavivirus. Cell Microbiol. 12:453-72
-
(2010)
Cell Microbiol.
, vol.12
, pp. 453-472
-
-
Bhuvanakantham, R.1
Li, J.2
Tan, T.T.3
Ng, M.L.4
-
121
-
-
84884699555
-
West Nile virus and dengue virus capsid protein negates the antiviral activity of human Sec 3 protein through the proteasome pathway
-
Bhuvanakantham R, Ng ML. 2013. West Nile virus and dengue virus capsid protein negates the antiviral activity of human Sec 3 protein through the proteasome pathway. Cell Microbiol. 15:1688-706
-
(2013)
Cell Microbiol.
, vol.15
, pp. 1688-1706
-
-
Bhuvanakantham, R.1
Ng, M.L.2
-
122
-
-
33749559162
-
Jab1 mediates cytoplasmic localization and degradation ofWest Nile virus capsid protein
-
Oh W, Yang MR, Lee EW, Park KM, Pyo S, et al. 2006. Jab1 mediates cytoplasmic localization and degradation ofWest Nile virus capsid protein. J. Biol. Chem. 281:30166-74
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 30166-30174
-
-
Oh, W.1
Yang, M.R.2
Lee, E.W.3
Park, K.M.4
Pyo, S.5
-
123
-
-
34848917602
-
Interactions between theWest Nile virus capsid protein and the host cell-encoded phosphatase inhibitor, I2PP2A
-
Hunt TA, Urbanowski MD, Kakani K, Law LM, Brinton MA, Hobman TC. 2007. Interactions between theWest Nile virus capsid protein and the host cell-encoded phosphatase inhibitor, I2PP2A. Cell Microbiol. 9:2756-66
-
(2007)
Cell Microbiol.
, vol.9
, pp. 2756-2766
-
-
Hunt, T.A.1
Urbanowski, M.D.2
Kakani, K.3
Law, L.M.4
Brinton, M.A.5
Hobman, T.C.6
-
124
-
-
79956115023
-
The capsid-binding nucleolar helicase DDX56 is important for infectivity ofWest Nile virus
-
Xu Z, Anderson R, Hobman TC. 2011. The capsid-binding nucleolar helicase DDX56 is important for infectivity ofWest Nile virus. J. Virol. 85:5571-80
-
(2011)
J. Virol.
, vol.85
, pp. 5571-5580
-
-
Xu, Z.1
Anderson, R.2
Hobman, T.C.3
-
125
-
-
84866181965
-
The helicase activity of DDX56 is required for its role in assembly of infectious West Nile virus particles
-
Xu Z, Hobman TC. 2012. The helicase activity of DDX56 is required for its role in assembly of infectious West Nile virus particles. Virology 433:226-35
-
(2012)
Virology
, vol.433
, pp. 226-235
-
-
Xu, Z.1
Hobman, T.C.2
-
126
-
-
84891022612
-
Dengue virus capsid protein interacts specifically with very low-density lipoproteins
-
Faustino AF, Carvalho FA, Martins IC, Castanho MA, Mohana-Borges R, et al. 2014. Dengue virus capsid protein interacts specifically with very low-density lipoproteins. Nanomedicine 10:247-55
-
(2014)
Nanomedicine
, vol.10
, pp. 247-255
-
-
Faustino, A.F.1
Carvalho, F.A.2
Martins, I.C.3
Castanho, M.A.4
Mohana-Borges, R.5
-
127
-
-
84871954468
-
Japanese encephalitis virus core protein inhibits stress granule formation through an interaction with Caprin-1 and facilitates viral propagation
-
Katoh H, Okamoto T, Fukuhara T, Kambara H, Morita E, et al. 2013. Japanese encephalitis virus core protein inhibits stress granule formation through an interaction with Caprin-1 and facilitates viral propagation. J. Virol. 87:489-502
-
(2013)
J. Virol.
, vol.87
, pp. 489-502
-
-
Katoh, H.1
Okamoto, T.2
Fukuhara, T.3
Kambara, H.4
Morita, E.5
-
128
-
-
84949844295
-
Flavivirus infection impairs peroxisome biogenesis and early antiviral signaling
-
You J, Hou S, Malik-Soni N, Xu Z, Kumar A, et al. 2015. Flavivirus infection impairs peroxisome biogenesis and early antiviral signaling. J. Virol. 89:12349-61
-
(2015)
J. Virol.
, vol.89
, pp. 12349-12361
-
-
You, J.1
Hou, S.2
Malik-Soni, N.3
Xu, Z.4
Kumar, A.5
-
129
-
-
84896742498
-
Capsid proteins of enveloped viruses as antiviral drug targets
-
Klumpp K, Crepin T. 2014. Capsid proteins of enveloped viruses as antiviral drug targets. Curr. Opin. Virol. 5:63-71
-
(2014)
Curr. Opin. Virol.
, vol.5
, pp. 63-71
-
-
Klumpp, K.1
Crepin, T.2
-
130
-
-
84872040382
-
A novel inhibitor of dengue virus replication that targets the capsid protein
-
Byrd CM, Dai D, Grosenbach DW, Berhanu A, Jones KF, et al. 2013. A novel inhibitor of dengue virus replication that targets the capsid protein. Antimicrob. Agents Chemother. 57:15-25
-
(2013)
Antimicrob. Agents Chemother.
, vol.57
, pp. 15-25
-
-
Byrd, C.M.1
Dai, D.2
Grosenbach, D.W.3
Berhanu, A.4
Jones, K.F.5
-
131
-
-
84952845489
-
Suppression of drug resistance in dengue virus
-
Mateo R, Nagamine CM, Kirkegaard K. 2015. Suppression of drug resistance in dengue virus. mBio 6:e01960-15
-
(2015)
MBio
, vol.6
, pp. e01960-e02015
-
-
Mateo, R.1
Nagamine, C.M.2
Kirkegaard, K.3
|