메뉴 건너뛰기




Volumn 9911 LNCS, Issue , 2016, Pages 697-716

Sympathy for the details: Dense trajectories and hybrid classification architectures for action recognition

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); IMAGE ENHANCEMENT; NETWORK ARCHITECTURE;

EID: 84990031871     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-46478-7_43     Document Type: Conference Paper
Times cited : (32)

References (67)
  • 1
    • 85019106855 scopus 로고    scopus 로고
    • A review of human activity recognition methods
    • Vrigkas, M., Nikou, C., Kakadiaris, I.: A review of human activity recognition methods. Front. Robot. AI 2, 1-28 (2015)
    • (2015) Front. Robot. AI , vol.2 , pp. 1-28
    • Vrigkas, M.1    Nikou, C.2    Kakadiaris, I.3
  • 3
    • 84898805910 scopus 로고    scopus 로고
    • Action recognition with improved trajectories
    • Wang, H., Schmid, C.: Action recognition with improved trajectories. In: ICCV (2013)
    • (2013) ICCV
    • Wang, H.1    Schmid, C.2
  • 4
    • 84876945537 scopus 로고    scopus 로고
    • Dense trajectories and motion boundary descriptors for action recognition
    • Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Dense trajectories and motion boundary descriptors for action recognition. IJCV 103, 60-79 (2013)
    • (2013) IJCV , vol.103 , pp. 60-79
    • Wang, H.1    Kläser, A.2    Schmid, C.3    Liu, C.L.4
  • 5
    • 84937156481 scopus 로고    scopus 로고
    • A robust and efficient video representation for action recognition
    • Wang, H., Oneata, D., Verbeek, J., Schmid, C.: A robust and efficient video representation for action recognition. Int. J. Comput. Vision 119(3), 219-238 (2015) .doi:10.1007/s11263-015-0846-5
    • (2015) Int. J. Comput. Vision , vol.119 , Issue.3 , pp. 219-238
    • Wang, H.1    Oneata, D.2    Verbeek, J.3    Schmid, C.4
  • 6
    • 84897461487 scopus 로고    scopus 로고
    • Activity representation with motion hierarchies
    • Gaidon, A., Harchaoui, Z., Schmid, C.: Activity representation with motion hierarchies. IJCV 107, 219-238 (2014)
    • (2014) IJCV , vol.107 , pp. 219-238
    • Gaidon, A.1    Harchaoui, Z.2    Schmid, C.3
  • 7
    • 84959241532 scopus 로고    scopus 로고
    • Beyond Gaussian pyramid: Multi-skip feature stacking for action recognition
    • Lan, Z., Lin, M., Li, X., Hauptmann, A.G., Raj, B.: Beyond Gaussian pyramid: multi-skip feature stacking for action recognition. In: CVPR (2015)
    • (2015) CVPR
    • Lan, Z.1    Lin, M.2    Li, X.3    Hauptmann, A.G.4    Raj, B.5
  • 9
    • 84929648796 scopus 로고    scopus 로고
    • Improving human action recognition using score distribution and ranking
    • Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.), Springer, Heidelberg
    • Hoai, M., Zisserman, A.: Improving human action recognition using score distribution and ranking. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9007, pp. 3-20. Springer, Heidelberg (2015) .doi:10.1007/978-3-319-16814-2_1
    • (2015) ACCV 2014. LNCS , vol.9007 , pp. 3-20
    • Hoai, M.1    Zisserman, A.2
  • 11
    • 84870183903 scopus 로고    scopus 로고
    • 3D convolutional neural networks for human action recognition
    • Ji, S., Yang, M., Yu, K., Xu, W.: 3D convolutional neural networks for human action recognition. T-PAMI 35, 221-31 (2013)
    • (2013) T-PAMI , vol.35 , pp. 221-231
    • Ji, S.1    Yang, M.2    Yu, K.3    Xu, W.4
  • 12
    • 84911364368 scopus 로고    scopus 로고
    • Large-scale video classification with convolutional neural networks
    • Karpathy, A., Leung, T.: Large-scale video classification with convolutional neural networks. In: CVPR (2014)
    • (2014) CVPR
    • Karpathy, A.1    Leung, T.2
  • 13
    • 84937862424 scopus 로고    scopus 로고
    • Two-stream convolutional networks for action recognition in videos
    • Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: NIPS (2014)
    • (2014) NIPS
    • Simonyan, K.1    Zisserman, A.2
  • 14
    • 84973863239 scopus 로고    scopus 로고
    • Human action recognition using factorized spatio-temporal convolutional networks
    • Sun, L., Jia, K., Yeung, D.Y., Shi, B.E.: Human action recognition using factorized spatio-temporal convolutional networks. In: ICCV (2015)
    • (2015) ICCV
    • Sun, L.1    Jia, K.2    Yeung, D.Y.3    Shi, B.E.4
  • 19
    • 85016005809 scopus 로고    scopus 로고
    • Delving deeper into convolutional networks for learning video representations
    • Ballas, N., Yao, L., Pal, C., Courville, A.C.: Delving deeper into convolutional networks for learning video representations. In: ICLR (2013)
    • (2013) ICLR
    • Ballas, N.1    Yao, L.2    Pal, C.3    Courville, A.C.4
  • 20
    • 84959230113 scopus 로고    scopus 로고
    • DevNet: A Deep Event Network for multimedia event detection and evidence recounting
    • Gan, C., Wang, N., Yang, Y., Yeung, D.Y., Hauptmann, A.G.: DevNet: A Deep Event Network for multimedia event detection and evidence recounting. In: CVPR (2015)
    • (2015) CVPR
    • Gan, C.1    Wang, N.2    Yang, Y.3    Yeung, D.Y.4    Hauptmann, A.G.5
  • 22
    • 84986266741 scopus 로고    scopus 로고
    • Convolutional two-stream network fusion for video action recognition
    • Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition. In: CVPR (2016)
    • (2016) CVPR
    • Feichtenhofer, C.1    Pinz, A.2    Zisserman, A.3
  • 23
    • 84965114137 scopus 로고    scopus 로고
    • Learning spatiotemporal features with 3D convolutional networks
    • Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: CVPR (2014)
    • (2014) CVPR
    • Tran, D.1    Bourdev, L.2    Fergus, R.3    Torresani, L.4    Paluri, M.5
  • 24
    • 34948815101 scopus 로고    scopus 로고
    • Fisher kernels on visual vocabularies for image categorization
    • Perronnin, F., Dance, C.: Fisher kernels on visual vocabularies for image categorization. In: CVPR (2007)
    • (2007) CVPR
    • Perronnin, F.1    Dance, C.2
  • 25
    • 78149348137 scopus 로고    scopus 로고
    • Improving the Fisher Kernel for large-scale image classification
    • Daniilidis, K., Maragos, P., Paragios, N. (eds.), Springer, Heidelberg
    • Perronnin, F., Sánchez, J., Mensink, T.: Improving the Fisher Kernel for large-scale image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 143-156. Springer, Heidelberg (2010) .doi:10.1007/978-3-642-15561-1_11
    • (2010) ECCV 2010. LNCS , vol.6314 , pp. 143-156
    • Perronnin, F.1    Sánchez, J.2    Mensink, T.3
  • 26
    • 84955282488 scopus 로고    scopus 로고
    • Action recognition with trajectory-pooled deepconvolutional descriptors
    • Wang, L., Qiao, Y., Tang, X.: Action recognition with trajectory-pooled deepconvolutional descriptors. In: CVPR (2015)
    • (2015) CVPR
    • Wang, L.1    Qiao, Y.2    Tang, X.3
  • 27
    • 84959204055 scopus 로고    scopus 로고
    • Fisher vectors meet neural networks: A hybrid classification architecture
    • Perronnin, F., Larlus, D.: Fisher vectors meet neural networks: a hybrid classification architecture. In: CVPR (2015)
    • (2015) CVPR
    • Perronnin, F.1    Larlus, D.2
  • 28
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 29
    • 84866678025 scopus 로고    scopus 로고
    • Three things everyone should know to improve object retrieval
    • Arandjelovi, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: CVPR (2012)
    • (2012) CVPR
    • Arandjelovi, R.1    Zisserman, A.2
  • 30
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)
    • (2015) ICML
    • Ioffe, S.1    Szegedy, C.2
  • 31
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted Boltzmann machines
    • Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML (2010)
    • (2010) ICML
    • Nair, V.1    Hinton, G.E.2
  • 33
    • 78049380429 scopus 로고    scopus 로고
    • Action classification in soccer videos with long short-term memory recurrent neural networks
    • Diamantaras, K., Duch, W., Iliadis, L.S. (eds.), Springer, Heidelberg
    • Baccouche, M., Mamalet, F., Wolf, C., Garcia, C., Baskurt, A.: Action classification in soccer videos with long short-term memory recurrent neural networks. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010. LNCS, vol. 6353, pp. 154-159. Springer, Heidelberg (2010) .doi:10.1007/978-3-642-15822-3_20
    • (2010) ICANN 2010. LNCS , vol.6353 , pp. 154-159
    • Baccouche, M.1    Mamalet, F.2    Wolf, C.3    Garcia, C.4    Baskurt, A.5
  • 34
    • 84986246211 scopus 로고    scopus 로고
    • Exploiting image-trained CNN architectures for unconstrained video classification
    • Zha, S., Luisier, F., Andrews, W., Srivastava, N., Salakhutdinov, R.: Exploiting image-trained CNN architectures for unconstrained video classification. In: BMVC (2015)
    • (2015) BMVC
    • Zha, S.1    Luisier, F.2    Rews, W.3    Srivastava, N.4    Salakhutdinov, R.5
  • 35
    • 84990022067 scopus 로고    scopus 로고
    • Modeling spatial-temporal clues in a hybrid deep learning framework for video classification
    • Wu, Z., Wang, X., Jiang, Y., Ye, H., Xue, X.: Modeling spatial-temporal clues in a hybrid deep learning framework for video classification. In: ACM MM (2015)
    • (2015) ACM MM
    • Wu, Z.1    Wang, X.2    Jiang, Y.3    Ye, H.4    Xue, X.5
  • 36
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 37
    • 33745821718 scopus 로고    scopus 로고
    • Human detection using oriented histograms of flow and appearance
    • Leonardis, A., Bischof, H., Pinz, A. (eds.), Springer, Heidelberg
    • Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of flow and appearance. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 428-441. Springer, Heidelberg (2006) .doi:10.1007/11744047_33
    • (2006) ECCV 2006. LNCS , vol.3952 , pp. 428-441
    • Dalal, N.1    Triggs, B.2    Schmid, C.3
  • 38
    • 84898405815 scopus 로고    scopus 로고
    • Recognizing activities with cluster-trees of tracklets
    • Gaidon, A., Harchaoui, Z., Schmid, C.: Recognizing activities with cluster-trees of tracklets. In: BMVC (2012)
    • (2012) BMVC
    • Gaidon, A.1    Harchaoui, Z.2    Schmid, C.3
  • 39
    • 84887398298 scopus 로고    scopus 로고
    • Better exploiting motion for better action recognition
    • Jain, M., Jegou, H., Bouthemy, P.: Better exploiting motion for better action recognition. In: CVPR (2013)
    • (2013) CVPR
    • Jain, M.1    Jegou, H.2    Bouthemy, P.3
  • 40
    • 84906510060 scopus 로고    scopus 로고
    • Action recognition with stacked Fisher vectors
    • Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
    • Peng, X., Zou, C., Qiao, Y., Peng, Q.: Action recognition with stacked Fisher vectors. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 581-595. Springer, Heidelberg (2014) .doi:10.1007/978-3-319-10602-1_38
    • (2014) ECCV 2014. LNCS , vol.8693 , pp. 581-595
    • Peng, X.1    Zou, C.2    Qiao, Y.3    Peng, Q.4
  • 42
    • 84856626270 scopus 로고    scopus 로고
    • Modeling spatial layout with Fisher vectors for image categorization
    • Krapac, J., Verbeek, J., Jurie, F.: Modeling spatial layout with Fisher vectors for image categorization. In: ICCV (2011)
    • (2011) ICCV
    • Krapac, J.1    Verbeek, J.2    Jurie, F.3
  • 45
    • 80052874098 scopus 로고    scopus 로고
    • Learning hierarchical invariant spatiotemporal features for action recognition with independent subspace analysis
    • Le, Q.V., Zou, W.Y., Yeung, S.Y., Ng, A.Y.: Learning hierarchical invariant spatiotemporal features for action recognition with independent subspace analysis. In: CVPR (2011)
    • (2011) CVPR
    • Le, Q.V.1    Zou, W.Y.2    Yeung, S.Y.3    Ng, A.Y.4
  • 46
    • 84898420173 scopus 로고    scopus 로고
    • The devil is in the details: An evaluation of recent feature encoding methods
    • Chatfield, K., Lempitsky, V., Vedaldi, A., Zisserman, A.: The devil is in the details: an evaluation of recent feature encoding methods. In: BMVC (2011)
    • (2011) BMVC
    • Chatfield, K.1    Lempitsky, V.2    Vedaldi, A.3    Zisserman, A.4
  • 48
    • 84866552328 scopus 로고    scopus 로고
    • Modeling the spatial layout of images beyond spatial pyramids
    • Sanchez, J., Perronnin, F., De Campos, T.: Modeling the spatial layout of images beyond spatial pyramids. Pattern Recogn. Lett. 33(16), 2216-2223 (2012)
    • (2012) Pattern Recogn. Lett , vol.33 , Issue.16 , pp. 2216-2223
    • Sanchez, J.1    Perronnin, F.2    De Campos, T.3
  • 50
    • 0242705996 scopus 로고    scopus 로고
    • The mathematics of learning: Dealing with data
    • Poggio, T., Smale, S.: The mathematics of learning: dealing with data. Not. Am. Math. Soc. 50, 537-544 (2003)
    • (2003) Not. Am. Math. Soc , vol.50 , pp. 537-544
    • Poggio, T.1    Smale, S.2
  • 52
    • 85072028231 scopus 로고    scopus 로고
    • Return of the devil in the details: Delving deep into convolutional nets
    • Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. In: BMVC (2014)
    • (2014) BMVC
    • Chatfield, K.1    Simonyan, K.2    Vedaldi, A.3    Zisserman, A.4
  • 55
    • 77956502203 scopus 로고    scopus 로고
    • A theoretical analysis of feature pooling in visual recognition
    • Boureau, Y.L., Ponce, J., LeCun, Y.: A theoretical analysis of feature pooling in visual recognition. In: ICML (2010)
    • (2010) ICML
    • Boureau, Y.L.1    Ponce, J.2    Lecun, Y.3
  • 58
    • 0006444732 scopus 로고    scopus 로고
    • An empirical evaluation of bagging and boosting
    • Maclin, R., Opitz, D.: An empirical evaluation of bagging and boosting. In: AAAI (1997)
    • (1997) AAAI
    • Maclin, R.1    Opitz, D.2
  • 59
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Zhou, Z.H.H., Wu, J. Tang W.: Ensembling neural networks: many could be better than all. Artif. Intell. 137, 239-263 (2002)
    • (2002) Artif. Intell , vol.137 , pp. 239-263
    • Zhou, Z.H.H.1    Wu, J.2    Tang, W.3
  • 61
  • 64
    • 78149353400 scopus 로고    scopus 로고
    • Modeling temporal structure of decomposable motion segments for activity classification
    • Daniilidis, K., Maragos, P., Paragios, N. (eds.), Springer, Heidelberg
    • Niebles, J.C., Chen, C.-W., Fei-Fei, L.: Modeling temporal structure of decomposable motion segments for activity classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 392-405. Springer, Heidelberg (2010) .doi:10.1007/978-3-642-15552-9_29
    • (2010) ECCV 2010. LNCS , vol.6312 , pp. 392-405
    • Niebles, J.C.1    Chen, C.-W.2    Fei-Fei, L.3
  • 66
    • 84867753906 scopus 로고    scopus 로고
    • Structured learning of human interaction in TV shows
    • Patron-Perez, A., Marszalek, M., Reid, I., Zisserman, A.: Structured learning of human interaction in TV shows. T-PAMI 34, 2441-2453 (2012)
    • (2012) T-PAMI , vol.34 , pp. 2441-2453
    • Patron-Perez, A.1    Marszalek, M.2    Reid, I.3    Zisserman, A.4
  • 67
    • 84959235126 scopus 로고    scopus 로고
    • What do 15,000 object categories tell us about classifying and localizing actions?
    • Jain, M., Van Gemert, J., Snoek, C.G.M.: What do 15,000 object categories tell us about classifying and localizing actions? In: CVPR (2015)
    • (2015) CVPR
    • Jain, M.1    Van Gemert, J.2    Snoek, C.G.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.