메뉴 건너뛰기




Volumn , Issue 9781447167341, 2015, Pages 341-386

Feature extraction methods and manifold learning methods

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84989839466     PISSN: 16103947     EISSN: 21978441     Source Type: Book Series    
DOI: 10.1007/978-1-4471-6735-8_11     Document Type: Chapter
Times cited : (92)

References (122)
  • 1
    • 0024774330 scopus 로고
    • Neural networks and principal component analysis: Learning from examples without local minima
    • P. Baldi and K. Hornik. Neural networks and principal component analysis: learning from examples without local minima. Neural Networks, 2(1):53-58, 1989.
    • (1989) Neural Networks , vol.2 , Issue.1 , pp. 53-58
    • Baldi, P.1    Hornik, K.2
  • 2
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • A.R. Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information Theory, 39(3):930-945, 1993.
    • (1993) IEEE Transactions on Information Theory , vol.39 , Issue.3 , pp. 930-945
    • Barron, A.R.1
  • 4
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6):1373-1396, 2003.
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 5
    • 0029411030 scopus 로고
    • An information-maximization approach to blind separation and blind deconvolution
    • A. Bell and T. Sejnowski. An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6):1129-1159, 1995.
    • (1995) Neural Computation , vol.7 , Issue.6 , pp. 1129-1159
    • Bell, A.1    Sejnowski, T.2
  • 9
    • 80053500222 scopus 로고    scopus 로고
    • Intrinsic dimension estimation by maximum likelihood in isotropic probabilistic pca
    • C. Bouveyron, G. Celeux, and S. Girard. Intrinsic dimension estimation by maximum likelihood in isotropic probabilistic pca. Pattern Recognition Letters, 32:1706-1713, 2011.
    • (2011) Pattern Recognition Letters , vol.32 , pp. 1706-1713
    • Bouveyron, C.1    Celeux, G.2    Girard, S.3
  • 11
    • 0027602489 scopus 로고
    • Hinging hyperplanes for regression, classification, and function approximation
    • L. Breiman. Hinging hyperplanes for regression, classification, and function approximation. IEEE Transactions on Information Theory, 39(3):999-1013, 1993.
    • (1993) IEEE Transactions on Information Theory , vol.39 , Issue.3 , pp. 999-1013
    • Breiman, L.1
  • 13
    • 0035425712 scopus 로고    scopus 로고
    • Intrinsic dimension estimation of data: An approach based on Grassberger-Procaccia’s algorithm
    • F. Camastra and A. Vinciarelli. Intrinsic dimension estimation of data: An approach based on Grassberger-Procaccia’s algorithm. Neural Processing Letters, 14(1):27-34, 2001.
    • (2001) Neural Processing Letters , vol.14 , Issue.1 , pp. 27-34
    • Camastra, F.1    Vinciarelli, A.2
  • 17
    • 0142112329 scopus 로고
    • A heuristic relaxation method for nonlinear mapping in cluster analysis
    • February
    • C. L. Chang and R. C. T. Lee. A heuristic relaxation method for nonlinear mapping in cluster analysis. IEEE Transactions on Computers, C-23:178-184, February 1974.
    • (1974) IEEE Transactions on Computers , vol.23 , pp. 178-184
    • Chang, C.L.1    Lee, R.C.T.2
  • 18
    • 0028416938 scopus 로고
    • Independent component analysis-a newconcept?
    • P. Comon. Independent component analysis-a newconcept? Signal Processing, 36:287-314, 1994.
    • (1994) Signal Processing , vol.36 , pp. 287-314
    • Comon, P.1
  • 20
    • 3543131272 scopus 로고    scopus 로고
    • Geodetic entropic graphs for dimension and entropy dimension in manifold learning
    • J. Costa and A. O. Hero. Geodetic entropic graphs for dimension and entropy dimension in manifold learning. IEEE Transactions on Signal Processing, 52(8):2210-2221, 2004.
    • (2004) IEEE Transactions on Signal Processing , vol.52 , Issue.8 , pp. 2210-2221
    • Costa, J.1    Hero, A.O.2
  • 22
    • 0030736375 scopus 로고    scopus 로고
    • Curvilinear component analysis: A self-organizing neural network for nonlinear mapping in cluster analysis
    • January
    • P. Demartines and J. Herault. Curvilinear component analysis: A self-organizing neural network for nonlinear mapping in cluster analysis. IEEE Transactions on Neural Networks, 8(1):148-154, January 1997.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.1 , pp. 148-154
    • Demartines, P.1    Herault, J.2
  • 23
    • 0001990386 scopus 로고
    • Degree of nonlinear approximation
    • Academic Press
    • R. A. DeVore. Degree of nonlinear approximation. In Approximation Theory, Vol. VI, pages 175-201. Academic Press, 1991.
    • (1991) Approximation Theory , vol.6 , pp. 175-201
    • Devore, R.A.1
  • 25
    • 35949018382 scopus 로고
    • Ergodic theory of chaos and strange attractors
    • J. P. Eckmann and D. Ruelle. Ergodic theory of chaos and strange attractors. Reviewof Modern Physics, 57(3):617-659, 1985.
    • (1985) Reviewof Modern Physics , vol.57 , Issue.3 , pp. 617-659
    • Eckmann, J.P.1    Ruelle, D.2
  • 26
    • 44049117207 scopus 로고
    • Fundamental limitations for estimating dimensions and lyapounov exponents in dynamical systems
    • J. P. Eckmann and D. Ruelle. Fundamental limitations for estimating dimensions and lyapounov exponents in dynamical systems. Physica, D-56:185-187, 1992.
    • (1992) Physica, D , vol.56 , pp. 185-187
    • Eckmann, J.P.1    Ruelle, D.2
  • 28
    • 84878532477 scopus 로고    scopus 로고
    • Intrinsic dimensionality estimation for high-dimensional data sets: New approaches for the computation of correlation dimension
    • J. Einbeck and Z. Kalantana. Intrinsic dimensionality estimation for high-dimensional data sets: New approaches for the computation of correlation dimension. Journal of Emerging Technologies in Web Intelligence, 5(2):91-97, 2013.
    • (2013) Journal of Emerging Technologies in Web Intelligence , vol.5 , Issue.2 , pp. 91-97
    • Einbeck, J.1    Kalantana, Z.2
  • 29
    • 58249086377 scopus 로고    scopus 로고
    • Intrinsic dimension estimation of manifolds by incising balls
    • M. Fan, H. Qiao, and B. Zhang. Intrinsic dimension estimation of manifolds by incising balls. Pattern Recognition, 42:780-787, 2009.
    • (2009) Pattern Recognition , vol.42 , pp. 780-787
    • Fan, M.1    Qiao, H.2    Zhang, B.3
  • 30
    • 84875387732 scopus 로고    scopus 로고
    • Dimension estimation of image manifolds by minimal cover approximation
    • April
    • M. Fan, X. Zhang, S. Chen, H. Bao, and S. Maybank. Dimension estimation of image manifolds by minimal cover approximation. Neurocomputing, 105:19-29, April 2013.
    • (2013) Neurocomputing , vol.105 , pp. 19-29
    • Fan, M.1    Zhang, X.2    Chen, S.3    Bao, H.4    Maybank, S.5
  • 32
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2):179-188, 1936.
    • (1936) Annals of Eugenics , vol.7 , Issue.2 , pp. 179-188
    • Fisher, R.A.1
  • 34
    • 0031254418 scopus 로고    scopus 로고
    • Nonlinear principal component analysis of neuronal spike train data
    • D. Fotheringhame and R. J. Baddeley. Nonlinear principal component analysis of neuronal spike train data. Biological Cybernetics, 77(4):282-288, 1997.
    • (1997) Biological Cybernetics , vol.77 , Issue.4 , pp. 282-288
    • Fotheringhame, D.1    Baddeley, R.J.2
  • 35
    • 0036807135 scopus 로고    scopus 로고
    • Efficient simplicial reconstructions of manifolds from their samples
    • D. Freedman. Efficient simplicial reconstructions of manifolds from their samples. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(10):1349-1357, October 2002.
    • (2002) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.24 , Issue.10 , pp. 1349-1357
    • Freedman, D.1
  • 37
    • 0016102310 scopus 로고
    • A projection pursuit algorithm for expoloratory data analysis
    • J. H. Friedman and J.W. Tukey. A projection pursuit algorithm for expoloratory data analysis. IEEE Transactions on Computers, C-23(9):881-890, 1974.
    • (1974) IEEE Transactions on Computers , vol.23 , Issue.9 , pp. 881-890
    • Friedman, J.H.1    Tukey, J.W.2
  • 39
    • 0015011520 scopus 로고
    • An algorithm for finding intrinsic dimensionality of data
    • K. Fukunaga and D. R. Olsen. An algorithm for finding intrinsic dimensionality of data. IEEE Transactions on Computers, 20(2):165-171, 1976.
    • (1976) IEEE Transactions on Computers , vol.20 , Issue.2 , pp. 165-171
    • Fukunaga, K.1    Olsen, D.R.2
  • 40
    • 0000065292 scopus 로고
    • Regularization theory, radial basis functions and networks
    • Springer-Verlag
    • F. Girosi. Regularization theory, radial basis functions and networks. In From Statistics to Neural Networks, pages 166-187, Springer-Verlag, 1994.
    • (1994) From Statistics to Neural Networks , pp. 166-187
    • Girosi, F.1
  • 41
    • 85019994836 scopus 로고
    • Rates of convergence of approximation by translates. Technical report
    • Massachusetts Institute of Technology
    • F. Girosi and G. Anzellotti. Rates of convergence of approximation by translates. Technical report, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1993.
    • (1993) Artificial Intelligence Laboratory
    • Girosi, F.1    Anzellotti, G.2
  • 42
    • 40749093037 scopus 로고
    • Measuring the strangeness of strange attractors
    • P. Grassberger and I. Procaccia. Measuring the strangeness of strange attractors. Physica, D 9(1-2):189-208, 1983.
    • (1983) Physica, D , vol.9 , Issue.1-2 , pp. 189-208
    • Grassberger, P.1    Procaccia, I.2
  • 45
    • 34250950477 scopus 로고
    • Dimension und äusseres mass
    • F. Hausdorff. Dimension und äusseres mass. Math. Annalen, 79(1-2):157-179, 1918.
    • (1918) Math. Annalen , vol.79 , Issue.1-2 , pp. 157-179
    • Hausdorff, F.1
  • 48
    • 0001744704 scopus 로고
    • A class of statistics with asymptotically normal distributions
    • W. Hoeffding. A class of statistics with asymptotically normal distributions. Annals of Statistics, 19:293-325, 1948.
    • (1948) Annals of Statistics , vol.19 , pp. 293-325
    • Hoeffding, W.1
  • 49
    • 84947403595 scopus 로고
    • Probability inequalities for sums of bounded random variables
    • W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of American Statistical Association, 58:13-30, 1963.
    • (1963) Journal of American Statistical Association , vol.58 , pp. 13-30
    • Hoeffding, W.1
  • 50
    • 0000263797 scopus 로고
    • Projection pursuit
    • P. Huber. Projection pursuit. The Annals of Statistics, 13(2):435-475, 1985.
    • (1985) The Annals of Statistics , vol.13 , Issue.2 , pp. 435-475
    • Huber, P.1
  • 52
    • 33845435132 scopus 로고    scopus 로고
    • New approximations of differential entropy for independent component analysis and projection pursuit
    • MIT Press
    • A. Hyvärinen. New approximations of differential entropy for independent component analysis and projection pursuit. In Advances in Neural Information Processing Systems 10, pages 273-279. MIT Press, 1998.
    • (1998) Advances in Neural Information Processing Systems , vol.10 , pp. 273-279
    • Hyvärinen, A.1
  • 53
    • 0141978306 scopus 로고    scopus 로고
    • The fixed-point algorithm andmaximum likelihood for independent component analysis
    • A. Hyvärinen. The fixed-point algorithm andmaximum likelihood for independent component analysis. Neural Processing Letters, 10(1):1-5, 1999.
    • (1999) Neural Processing Letters , vol.10 , Issue.1 , pp. 1-5
    • Hyvärinen, A.1
  • 54
    • 0346307721 scopus 로고    scopus 로고
    • A fast fixed-point algorithm for independent component analysis
    • A. Hyvärinen and E. Oja. A fast fixed-point algorithm for independent component analysis. Neural Computation, 9(7):1483-1492, 1997.
    • (1997) Neural Computation , vol.9 , Issue.7 , pp. 1483-1492
    • Hyvärinen, A.1    Oja, E.2
  • 55
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • A. Hyvärinen and E. Oja. Independent component analysis: Algorithms and applications. Neural Networks, 13(4-5):411-430, 2000.
    • (2000) Neural Networks , vol.13 , Issue.4-5 , pp. 411-430
    • Hyvärinen, A.1    Oja, E.2
  • 58
    • 0000796112 scopus 로고
    • A simple lemma on greedy approximation in hilbert space and convergence rates for projection pursuit regression and neural network training
    • March
    • L. K. Jones. A simple lemma on greedy approximation in hilbert space and convergence rates for projection pursuit regression and neural network training. Journal of the Royal Statistical Society, 20(1):608-613, March 1992.
    • (1992) Journal of the Royal Statistical Society , vol.20 , Issue.1 , pp. 608-613
    • Jones, L.K.1
  • 59
    • 0001501047 scopus 로고
    • Rectifiable sets and the traveling salesman problem
    • April
    • P. W. Jones. Rectifiable sets and the traveling salesman problem. Inventiones Mathematicae, 102:1-15, April 1990.
    • (1990) Inventiones Mathematicae , vol.102 , pp. 1-15
    • Jones, P.W.1
  • 60
    • 0026191274 scopus 로고
    • Blind separation of sources, part i: An adaptive algorithm based on neuromimetic architecture
    • C. Jutten and J. Herault. Blind separation of sources, part i: An adaptive algorithm based on neuromimetic architecture. Signal Processing, 24(1):1-10, 1991.
    • (1991) Signal Processing , vol.24 , Issue.1 , pp. 1-10
    • Jutten, C.1    Herault, J.2
  • 62
    • 0028272776 scopus 로고
    • Representations and separation of signals using nonlinear pca type learning
    • J. Karhunen and J. Joutsensalo. Representations and separation of signals using nonlinear pca type learning. Neural Networks, 7(1):113-127, 1994.
    • (1994) Neural Networks , vol.7 , Issue.1 , pp. 113-127
    • Karhunen, J.1    Joutsensalo, J.2
  • 64
    • 84898957854 scopus 로고    scopus 로고
    • Intrinsic dimension estimation using packing numbers
    • MIT Press
    • B. Kégl. Intrinsic dimension estimation using packing numbers. In Advances in Neural Information Processing 15, pages 681-688. MIT Press, 2003.
    • (2003) Advances in Neural Information Processing , vol.15 , pp. 681-688
    • Kégl, B.1
  • 68
    • 70350674995 scopus 로고
    • On the shortest spanning subtree of a graph and the travelling salesman problem
    • J. B. Kruskal. On the shortest spanning subtree of a graph and the travelling salesman problem. Proceedings of the American Mathematical Society, 7:48-50, 1956.
    • (1956) Proceedings of the American Mathematical Society , vol.7 , pp. 48-50
    • Kruskal, J.B.1
  • 69
    • 0041654220 scopus 로고
    • Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis
    • J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1):1-27, 1964.
    • (1964) Psychometrika , vol.29 , Issue.1 , pp. 1-27
    • Kruskal, J.B.1
  • 70
    • 84910237391 scopus 로고
    • Comments on a nonlinear mapping for data structure analysis
    • C-20:1614, December
    • J. B. Kruskal. Comments on a nonlinear mapping for data structure analysis. IEEE Transaction on Computers, C-20:1614, December 1971.
    • (1971) IEEE Transaction on Computers
    • Kruskal, J.B.1
  • 71
    • 40649095632 scopus 로고
    • Linear transformation of multivariate data to reveal clustering
    • Academic Press
    • J. B. Kruskal. Linear transformation of multivariate data to reveal clustering. In Multidimensional Scaling, vol. I, pages 101-115. Academic Press, 1972.
    • (1972) Multidimensional Scaling , vol.1 , pp. 101-115
    • Kruskal, J.B.1
  • 72
    • 0000742860 scopus 로고
    • Geometrical models and badness-of-fit functions
    • Academic Press
    • J. B. Kruskal and J. D. Carroll. Geometrical models and badness-of-fit functions. In Multivariate Analisys, vol. 2, pages 639-671. Academic Press, 1969.
    • (1969) Multivariate Analisys , vol.2 , pp. 639-671
    • Kruskal, J.B.1    Carroll, J.D.2
  • 74
    • 78649400333 scopus 로고    scopus 로고
    • Maximum likelihood estimation of intrinsic dimension
    • MIT Press
    • E. Levina and P. Bickel. Maximum likelihood estimation of intrinsic dimension. In Advances in Neural Information Processing 17, pages 777-784. MIT Press, 2005.
    • (2005) Advances in Neural Information Processing , vol.17 , pp. 777-784
    • Levina, E.1    Bickel, P.2
  • 79
    • 0018918171 scopus 로고
    • An algorithm for vector quantizer design
    • S. P. Lloyd. An algorithm for vector quantizer design. IEEE Transaction on Communications, 28(1):84-95, 1982.
    • (1982) IEEE Transaction on Communications , vol.28 , Issue.1 , pp. 84-95
    • Lloyd, S.P.1
  • 82
    • 0001441372 scopus 로고
    • Probable networks and plausible prediction-a review of practical bayesian methods for supervised neural networks
    • D. J. C. Mac Kay. Probable networks and plausible prediction-a review of practical bayesian methods for supervised neural networks. Network: Computation in Neural Systems, 6(3):469-505, 1995.
    • (1995) Network: Computation in Neural Systems , vol.6 , Issue.3 , pp. 469-505
    • Mac Kay, D.J.C.1
  • 83
    • 85020049717 scopus 로고    scopus 로고
    • Comments on ’maximum likelihood estimation of intrinsic dimension by E. Levina and M.Bickel’. University of Cambridge
    • D.J.C. MacKay and Z. Ghamarani.Comments on ’maximum likelihood estimation of intrinsic dimension by E. Levina and M.Bickel’. University of Cambridge, http://inference.phy.cam.uc.uk/mackay/dimension, 2005
    • (2005)
    • Mackay, D.J.C.1    Ghamarani, Z.2
  • 84
    • 0031646493 scopus 로고    scopus 로고
    • Limitations of nonlinear pca as performed with generic neural networks
    • E. C. Malthouse. Limitations of nonlinear pca as performed with generic neural networks. IEEE Transaction on Neural Networks, 9(1):165-173, 1998.
    • (1998) IEEE Transaction on Neural Networks , vol.9 , Issue.1 , pp. 165-173
    • Malthouse, E.C.1
  • 86
    • 0028204732 scopus 로고
    • Topology representing networks
    • T. Martinetz and K. Schulten. Topology representing networks. Neural Networks, 7(3):507-522, 1994.
    • (1994) Neural Networks , vol.7 , Issue.3 , pp. 507-522
    • Martinetz, T.1    Schulten, K.2
  • 87
    • 0000011910 scopus 로고
    • Laplace eigenvalues of graphs: A survey
    • B. Mohar. Laplace eigenvalues of graphs: a survey. Discrete Mathematics, 109(1-3):171-183, 1992.
    • (1992) Discrete Mathematics , vol.109 , Issue.1-3 , pp. 171-183
    • Mohar, B.1
  • 88
    • 76749147912 scopus 로고    scopus 로고
    • Dimensionality estimation, manifold learning and function approximation using tensor voting
    • P. Mordohai and G. Medioni. Dimensionality estimation, manifold learning and function approximation using tensor voting. Journal of Machine Learning Research, 11:410-450, 2010.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 410-450
    • Mordohai, P.1    Medioni, G.2
  • 89
    • 0000772267 scopus 로고
    • Non-linear neurons in the lownoise limit: A factorial code maximizes information transfer
    • J.-P. Nadal and N. Parga. Non-linear neurons in the lownoise limit: a factorial code maximizes information transfer. Networks, 5(4):565-581, 1994.
    • (1994) Networks , vol.5 , Issue.4 , pp. 565-581
    • Nadal, J.-P.1    Parga, N.2
  • 91
    • 84898936603 scopus 로고    scopus 로고
    • Maximum likelihood blind source separation: A contextsensitive generalization of ica
    • MIT Press
    • B. A. Pearlmutter and L. C. Parra. Maximum likelihood blind source separation: A contextsensitive generalization of ica. In Advances in Neural Information Processing 9, pages 613-619. MIT Press, 1997.
    • (1997) Advances in Neural Information Processing , vol.9 , pp. 613-619
    • Pearlmutter, B.A.1    Parra, L.C.2
  • 93
    • 0002049291 scopus 로고
    • Separation of a mixture of independent sources through a maximum likelihood approach
    • D.-T. Pham, P. Garrat, and C. Jutten. Separation of a mixture of independent sources through a maximum likelihood approach. In Proceeding EUSIPCO92, pages 771-774, 1992.
    • (1992) Proceeding EUSIPCO92 , pp. 771-774
    • Pham, D.-T.1    Garrat, P.2    Jutten, C.3
  • 95
    • 84911584312 scopus 로고
    • Shortest connection networks and some generalizations
    • R. C. Prim. Shortest connection networks and some generalizations. Bell System Technical Journal, 36:1389-1401, 1957.
    • (1957) Bell System Technical Journal , vol.36 , pp. 1389-1401
    • Prim, R.C.1
  • 96
    • 72349089295 scopus 로고    scopus 로고
    • Estimation of intrinsic dimensionality using high-rate vector quantization
    • MIT Press
    • M. Raginsky and S. Lazebnik. Estimation of intrinsic dimensionality using high-rate vector quantization. In Advances in Neural Information Processing, pages 1105-1112. MIT Press, 2006.
    • (2006) Advances in Neural Information Processing , pp. 1105-1112
    • Raginsky, M.1    Lazebnik, S.2
  • 101
    • 33646162415 scopus 로고    scopus 로고
    • Selection of the optimal parameter value for the isomap algorithm
    • O. Samko, A. D. Marshall, and P.L. Rosin. Selection of the optimal parameter value for the isomap algorithm. Pattern Recognition Letters, 27(9):968-979, 2006.
    • (2006) Pattern Recognition Letters , vol.27 , Issue.9 , pp. 968-979
    • Samko, O.1    Marshall, A.D.2    Rosin, P.L.3
  • 102
    • 84887006810 scopus 로고
    • A nonlinear mapping for data structure analysis
    • May
    • J. W. Jr. Sammon. A nonlinear mapping for data structure analysis. IEEE Transaction on Computers, C-18(5):401-409, May 1969.
    • (1969) IEEE Transaction on Computers , vol.18 , Issue.5 , pp. 401-409
    • Sammon, J.W.1
  • 103
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: Unsupervised learning of lowdimensional manifolds
    • June
    • L. K. Saul and S. Roweis. Think globally, fit locally: unsupervised learning of lowdimensional manifolds. Journal of Machine Learning Research, 4:119-155, June 2003.
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 119-155
    • Saul, L.K.1    Roweis, S.2
  • 104
    • 34250920725 scopus 로고
    • The analysis of proximities: Multimensional scalingwith an unknown distance function
    • June
    • R. N. Shepard. The analysis of proximities: Multimensional scalingwith an unknown distance function. Psychometrika, 27(3):219-246, June 1962.
    • (1962) Psychometrika , vol.27 , Issue.3 , pp. 219-246
    • Shepard, R.N.1
  • 105
    • 33645225931 scopus 로고
    • Representation of structure in similarity data problems and prospects
    • December
    • R. N. Shepard. Representation of structure in similarity data problems and prospects. Psychometrika, 39(4):373-421, December 1974.
    • (1974) Psychometrika , vol.39 , Issue.4 , pp. 373-421
    • Shepard, R.N.1
  • 106
    • 0003326616 scopus 로고
    • Parametric representation of nonlinear data structures
    • Academic Press
    • R. N. Shepard and J. D. Carroll. Parametric representation of nonlinear data structures. In Multivariate Analysis, pages 561-592. Academic Press, 1969.
    • (1969) Multivariate Analysis , pp. 561-592
    • Shepard, R.N.1    Carroll, J.D.2
  • 109
    • 0002405786 scopus 로고
    • On the numerical determination of the dimension of an attractor
    • Springer-Verlag
    • F. Takens. On the numerical determination of the dimension of an attractor. In Dynamical Systems and Bifurcations, Proceedings Groningen 1984, pages 99-106. Springer-Verlag, 1984.
    • (1984) Dynamical Systems and Bifurcations, Proceedings Groningen , vol.1984 , pp. 99-106
    • Takens, F.1
  • 110
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • December
    • J. B. Tanenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(12):2319-2323, December 2000.
    • (2000) Science , vol.290 , Issue.12 , pp. 2319-2323
    • Tanenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 111
    • 0000419983 scopus 로고
    • Lacunarity in a best estimator of fractal dimension
    • J. Theiler. Lacunarity in a best estimator of fractal dimension. Physics Letters, A 133(4-5):195-200, 1988.
    • (1988) Physics Letters, A , vol.133 , Issue.4-5 , pp. 195-200
    • Theiler, J.1
  • 112
    • 0000478578 scopus 로고
    • Statistical precision of dimension estimators
    • J. Theiler. Statistical precision of dimension estimators. Physical Review, A41:3038-3051, 1990.
    • (1990) Physical Review , vol.A41 , pp. 3038-3051
    • Theiler, J.1
  • 113
    • 44049111332 scopus 로고
    • Testing for nonlinearity in time series: The method for surrogate date
    • J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer. Testing for nonlinearity in time series: the method for surrogate date. Physica, D58(1-4):77-94, 1992.
    • (1992) Physica , vol.D58 , Issue.1-4 , pp. 77-94
    • Theiler, J.1    Eubank, S.2    Longtin, A.3    Galdrikian, B.4    Farmer, J.D.5
  • 116
    • 0016917031 scopus 로고
    • Statistical estimation of the intrinsic dimensionality of a noisy signal collection
    • G. V Trunk. Statistical estimation of the intrinsic dimensionality of a noisy signal collection. IEEE Transaction on Computers, 25(2):165-171, 1976.
    • (1976) IEEE Transaction on Computers , vol.25 , Issue.2 , pp. 165-171
    • Trunk, G.V.1
  • 117
    • 77955956946 scopus 로고    scopus 로고
    • Crystal fingerprint space-a novel paradigm for studying crystalstructure sets
    • September
    • M. Valle and A.R. Oganov. Crystal fingerprint space-a novel paradigm for studying crystalstructure sets. Acta Crystallographica Section A, A66:507-517, September 2010.
    • (2010) Acta Crystallographica Section A , vol.A66 , pp. 507-517
    • Valle, M.1    Oganov, A.R.2
  • 119
    • 84945576037 scopus 로고    scopus 로고
    • Intrinsic dimension estimation of manifolds by incising balls
    • X. Wang and J.S. Marron. Intrinsic dimension estimation of manifolds by incising balls. Electronic Journal of Statistics, 2:127-148, 2008.
    • (2008) Electronic Journal of Statistics , vol.2 , pp. 127-148
    • Wang, X.1    Marron, J.S.2
  • 120
    • 0025651706 scopus 로고
    • Multisurface method of pattern separation for medical diagnosis applied to breast cytology
    • W. H. Wolberg and O. Mangasarian. Multisurface method of pattern separation for medical diagnosis applied to breast cytology. Proceedings of theNational Academy of Sciences,U.S.A., 87(1):9193-9196, 1990.
    • (1990) Proceedings of Thenational Academy of Sciences,U.S.A , vol.87 , Issue.1 , pp. 9193-9196
    • Wolberg, W.H.1    Mangasarian, O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.