메뉴 건너뛰기




Volumn 32, Issue 14, 2011, Pages 1706-1713

Intrinsic dimension estimation by maximum likelihood in isotropic probabilistic PCA

Author keywords

Asymptotic consistency; Dimension reduction; Intrinsic dimension; Isotropic model; Maximum likelihood; Probabilistic PCA

Indexed keywords

MAXIMUM LIKELIHOOD; PRINCIPAL COMPONENT ANALYSIS;

EID: 80053500222     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2011.07.017     Document Type: Article
Times cited : (41)

References (37)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • H. Akaike A new look at the statistical model identification IEEE Trans. Autom. Control 19 6 1974 716 723
    • (1974) IEEE Trans. Autom. Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 7
    • 67649389414 scopus 로고    scopus 로고
    • Robust supervised classification with mixture models: Learning from data with uncertain labels
    • C. Bouveyron, and S. Girard Robust supervised classification with mixture models: Learning from data with uncertain labels Pattern Recognition 42 11 2009 2649 2658
    • (2009) Pattern Recognition , vol.42 , Issue.11 , pp. 2649-2658
    • Bouveyron, C.1    Girard, S.2
  • 10
    • 0142025120 scopus 로고    scopus 로고
    • Data dimensionality estimation methods: A survey
    • DOI 10.1016/S0031-3203(03)00176-6
    • F. Camastra Data dimensionality estimation methods: A survey Pattern Recognition 36 2003 2945 2954 (Pubitemid 37293405)
    • (2003) Pattern Recognition , vol.36 , Issue.12 , pp. 2945-2954
    • Camastra, F.1
  • 12
    • 84937549955 scopus 로고
    • The scree test for the number of factors
    • R. Cattell The scree test for the number of factors Multivariate Behav. Res. 1 2 1966 245 276
    • (1966) Multivariate Behav. Res. , vol.1 , Issue.2 , pp. 245-276
    • Cattell, R.1
  • 13
    • 0032631689 scopus 로고    scopus 로고
    • Nonlinear modeling of scattered multivariate data and its application to shape change
    • B. Chalmond, and S. Girard Nonlinear modeling of scattered multivariate data and its application to shape change IEEE Trans. Pattern Anal. Machine Intell. 21 5 1999 422 432
    • (1999) IEEE Trans. Pattern Anal. Machine Intell. , vol.21 , Issue.5 , pp. 422-432
    • Chalmond, B.1    Girard, S.2
  • 14
    • 0033721471 scopus 로고    scopus 로고
    • Inferring the eigenvalues of covariance matrices from limited, noisy data
    • R. Everson, and S. Roberts Inferring the eigenvalues of covariance matrices from limited, noisy data IEEE Trans. Signal Process. 48 7 2000 2083 2091
    • (2000) IEEE Trans. Signal Process. , vol.48 , Issue.7 , pp. 2083-2091
    • Everson, R.1    Roberts, S.2
  • 15
    • 58249086377 scopus 로고    scopus 로고
    • Intrinsic dimension estimation of manifolds by incising balls
    • M. Fan, H. Qiao, and B. Zhang Intrinsic dimension estimation of manifolds by incising balls Pattern Recognition 42 5 2009 780 787
    • (2009) Pattern Recognition , vol.42 , Issue.5 , pp. 780-787
    • Fan, M.1    Qiao, H.2    Zhang, B.3
  • 16
    • 36849029089 scopus 로고    scopus 로고
    • Bayesian regularization for normal mixture estimation and model-based clustering
    • C. Fraley, and A. Raftery Bayesian regularization for normal mixture estimation and model-based clustering J. Classif. 24 2007 155 181
    • (2007) J. Classif. , vol.24 , pp. 155-181
    • Fraley, C.1    Raftery, A.2
  • 17
    • 0015011520 scopus 로고
    • An algorithm for finding intrinsic dimensionality of data
    • K. Fukunaga, and D.R. Olsen An algorithm for finding intrinsic dimensionality of data IEEE Trans. Comput. 20 2 1971 176 183
    • (1971) IEEE Trans. Comput. , vol.20 , Issue.2 , pp. 176-183
    • Fukunaga, K.1    Olsen, D.R.2
  • 19
    • 0028272776 scopus 로고
    • Representation and separation of signals using nonlinear PCA type learning
    • J. Karhunen, and J. Joutsensalo Representation and separation of signals using nonlinear PCA type learning Neural Netw. 7 1 1994 113 127
    • (1994) Neural Netw. , vol.7 , Issue.1 , pp. 113-127
    • Karhunen, J.1    Joutsensalo, J.2
  • 24
    • 78650830366 scopus 로고    scopus 로고
    • Probabilistic principal component analysis for metabolomic data
    • G. Nyamundanda, L. Brennan, and I.C. Gormley Probabilistic principal component analysis for metabolomic data BMC Bioinform. 11 2010 571 581
    • (2010) BMC Bioinform. , vol.11 , pp. 571-581
    • Nyamundanda, G.1    Brennan, L.2    Gormley, I.C.3
  • 26
    • 0031118829 scopus 로고    scopus 로고
    • Model order selection for the singular value decomposition and the discrete Karhunen-Love transform using a Bayesian approach
    • J.J. Rajan, and P.J.W. Rayner Model order selection for the singular value decomposition and the discrete Karhunen-Love transform using a Bayesian approach IEE Proc. Vision Image Signal Proces. 144 2 1997 116 123
    • (1997) IEE Proc. Vision Image Signal Proces. , vol.144 , Issue.2 , pp. 116-123
    • Rajan, J.J.1    Rayner, P.J.W.2
  • 28
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • DOI 10.1126/science.290.5500.2323
    • S. Roweis, and L. Saul Nonlinear dimensionality reduction by locally linear embedding Science 290 5500 2000 2323 2326 (Pubitemid 32041578)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 29
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear Component Analysis as a Kernel Eigenvalue Problem
    • B. Schölkopf, A. Smola, and K.-R. Müller Nonlinear component analysis as a kernel eigenvalue problem Neural Comput. 10 5 1998 1299 1319 (Pubitemid 128463674)
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.-R.3
  • 30
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz Estimating the dimension of a model Ann. Statist. 6 1978 461 464
    • (1978) Ann. Statist. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 31
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • DOI 10.1126/science.290.5500.2319
    • J. Tenenbaum, V. De Silva, and J. Langford A global geometric framework for non-linear dimensionality reduction Science 290 5500 2000 2319 2323 (Pubitemid 32041577)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 32
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analyzers
    • M. Tipping, and C. Bishop Mixtures of probabilistic principal component analyzers Neural Comput. 11 2 1999 443 482
    • (1999) Neural Comput. , vol.11 , Issue.2 , pp. 443-482
    • Tipping, M.1    Bishop, C.2
  • 33
    • 0038959172 scopus 로고    scopus 로고
    • Probabilistic principal component analysis
    • M. Tipping, and C. Bishop Probabilistic principal component analysis J. Roy. Statist. Soc., Ser. B 3 61 1999 611 6222
    • (1999) J. Roy. Statist. Soc., Ser. B , vol.3 , Issue.61 , pp. 611-6222
    • Tipping, M.1    Bishop, C.2
  • 34
    • 0009607169 scopus 로고
    • Asymptotic inference for eigenvectors
    • D. Tyler Asymptotic inference for eigenvectors Ann. Statist. 9 4 1981 725 736
    • (1981) Ann. Statist. , vol.9 , Issue.4 , pp. 725-736
    • Tyler, D.1
  • 37
    • 0036581055 scopus 로고    scopus 로고
    • Products of Gaussians and probabilistic minor component analysis
    • C. Williams, and F. Agakov Products of Gaussians and probabilistic minor component analysis Neural Comput. 14 5 2002 1169 1182
    • (2002) Neural Comput. , vol.14 , Issue.5 , pp. 1169-1182
    • Williams, C.1    Agakov, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.