메뉴 건너뛰기




Volumn 9, Issue 1, 1998, Pages 165-173

Limitations of nonlinear PCA as performed with generic neural networks

Author keywords

Data compression; Feature extraction; Nonlinear principal components analysis; Principal components; Principal curves; Principal surfaces

Indexed keywords

APPROXIMATION THEORY; DATA COMPRESSION; ERROR ANALYSIS; FEATURE EXTRACTION; FUNCTIONS; LEARNING SYSTEMS; MATHEMATICAL MODELS;

EID: 0031646493     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/72.655038     Document Type: Article
Times cited : (103)

References (26)
  • 1
    • 0024774330 scopus 로고
    • Neural networks and principal component analysis: Learning from examples without local minima
    • B. Baldi and K. Hornik, "Neural networks and principal component analysis: Learning from examples without local minima," Neural Networks, vol. 2, pp. 53-58, 1989.
    • (1989) Neural Networks , vol.2 , pp. 53-58
    • Baldi, B.1    Hornik, K.2
  • 4
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • G. Cybenko, "Approximation by superpositions of a sigmoidal function," Math. Contr. Signals Syst., vol. 2, pp. 303-314, 1989.
    • (1989) Math. Contr. Signals Syst. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 6
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysis - Based on principal curves and neural networks
    • D. Dong and T. McAvoy, "Nonlinear principal component analysis - Based on principal curves and neural networks," Computers and Chem. Eng., vol. 20, no. 1, pp. 65-78, 1996.
    • (1996) Computers and Chem. Eng. , vol.20 , Issue.1 , pp. 65-78
    • Dong, D.1    McAvoy, T.2
  • 8
    • 84950754164 scopus 로고
    • Exploratory projection pursuit
    • J. H. Friedman, "Exploratory projection pursuit," J. Amer. Statist. Assoc., vol. 82, no. 397, pp. 249-267, 1987.
    • (1987) J. Amer. Statist. Assoc. , vol.82 , Issue.397 , pp. 249-267
    • Friedman, J.H.1
  • 9
    • 0000006342 scopus 로고
    • Nonlinear data structure extraction using simple Hebbian networks
    • C. Fyfe and R. Baddeley, "Nonlinear data structure extraction using simple Hebbian networks," Biol. Cybern., vol. 72, pp. 533-541, 1995.
    • (1995) Biol. Cybern. , vol.72 , pp. 533-541
    • Fyfe, C.1    Baddeley, R.2
  • 13
    • 0028272776 scopus 로고
    • Representation and separation of signals using nonlinear PCA type learning
    • J. Karhunen and J. Joutsensalo, "Representation and separation of signals using nonlinear PCA type learning," Neural Networks, vol. 7, pp. 113-127, 1994.
    • (1994) Neural Networks , vol.7 , pp. 113-127
    • Karhunen, J.1    Joutsensalo, J.2
  • 14
    • 0029061996 scopus 로고
    • Generalizations of PCA, optimization problems, and neural networks
    • _, "Generalizations of PCA, optimization problems, and neural networks," Neural Networks, vol. 8, pp. 549-562, 1995.
    • (1995) Neural Networks , vol.8 , pp. 549-562
  • 15
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using autoassociative neural networks
    • M. A. Kramer, "Nonlinear principal component analysis using autoassociative neural networks," AIChE J., vol. 37, no. 2, pp. 233-243, 1991.
    • (1991) AIChE J. , vol.37 , Issue.2 , pp. 233-243
    • Kramer, M.A.1
  • 16
    • 21344481107 scopus 로고
    • Adaptive principal surfaces
    • M. LeBlanc and R. Tibshirani, "Adaptive principal surfaces," J. Amer. Statist. Assoc., vol. 89, no. 425, pp. 53-64, 1994.
    • (1994) J. Amer. Statist. Assoc. , vol.89 , Issue.425 , pp. 53-64
    • LeBlanc, M.1    Tibshirani, R.2
  • 17
    • 33646887390 scopus 로고
    • On the limited memory {BFGS} method for large scale optimization
    • D. Liu and J. Nocedal, "On the limited memory {BFGS} method for large scale optimization," Math. Prog., vol. 45, pp. 503-528, 1989.
    • (1989) Math. Prog. , vol.45 , pp. 503-528
    • Liu, D.1    Nocedal, J.2
  • 18
    • 0029179557 scopus 로고
    • Some theoretical results on nonlinear principal components analysis
    • June
    • E. Malthouse, R. Mah, and A. Tamhane, "Some theoretical results on nonlinear principal components analysis," in Proc. Amer. Contr. Conf., June 1995.
    • (1995) Proc. Amer. Contr. Conf.
    • Malthouse, E.1    Mah, R.2    Tamhane, A.3
  • 20
    • 0024883243 scopus 로고
    • Optimal unsupervised learning in a single-layer linear feedforward neural network
    • T. Sanger, "Optimal unsupervised learning in a single-layer linear feedforward neural network," Neural Networks, vol. 2, pp. 459-473, 1989.
    • (1989) Neural Networks , vol.2 , pp. 459-473
    • Sanger, T.1
  • 21
    • 0038331288 scopus 로고
    • Optimal hidden units for two-layer nonlinear feedforward neural networks
    • _, "Optimal hidden units for two-layer nonlinear feedforward neural networks," Int. J. Pattern Recognition and Artificial Intell., vol. 5, no. 4, pp. 545-561, 1991.
    • (1991) Int. J. Pattern Recognition and Artificial Intell. , vol.5 , Issue.4 , pp. 545-561
  • 22
    • 0024627880 scopus 로고
    • Dimensionality-reduction using connectionist networks
    • E. Saund, "Dimensionality-reduction using connectionist networks," IEEE Trans. Pattern Anal. Machine Intell., vol. 11, no. 3, pp. 304-314, 1989.
    • (1989) IEEE Trans. Pattern Anal. Machine Intell. , vol.11 , Issue.3 , pp. 304-314
    • Saund, E.1
  • 24
    • 0029322882 scopus 로고
    • Reducing data dimensionality through optimizing neural-network inputs
    • S. Tan and M. Mavrovouniotis, "Reducing data dimensionality through optimizing neural-network inputs," AIChE J., vol. 41, no. 6, pp. 1471-1480, 1995.
    • (1995) AIChE J. , vol.41 , Issue.6 , pp. 1471-1480
    • Tan, S.1    Mavrovouniotis, M.2
  • 26
    • 0026745682 scopus 로고
    • Modified Hebbian learning for curve and surface fitting
    • L. Xu, E. Oja, and C. Suen, "Modified Hebbian learning for curve and surface fitting," Neural Networks, vol. 5, pp. 441-457, 1992.
    • (1992) Neural Networks , vol.5 , pp. 441-457
    • Xu, L.1    Oja, E.2    Suen, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.