메뉴 건너뛰기




Volumn , Issue , 2007, Pages 169-179

Conical dimension as an intrisic dimension estimator and its applications

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING ALGORITHMS;

EID: 49749132118     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972771.16     Document Type: Conference Paper
Times cited : (6)

References (15)
  • 1
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimension reduction
    • Tenenbaum, J., De Silva, V. feLangford, J., A global geometric framework for nonlinear dimension reduction. Science,2 90:2319-2323, 2000.
    • (2000) Science , vol.2 , Issue.90 , pp. 2319-2323
    • Tenenbaum, J.1    De Silva, V.2    feLangford, J.3
  • 2
    • 85140866560 scopus 로고    scopus 로고
    • Zhang, Z.&Zha, H. Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Al ignment. SIAM J. Scientific Computing,26, No. 1, 313-338, 2004.Figure 21: Boundary detection of incomplete tire
    • Zhang, Z.&Zha, H. Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Al ignment. SIAM J. Scientific Computing,Vol. 26, No. 1, 313-338, 2004.Figure 21: Boundary detection of incomplete tire
  • 3
    • 0037948870 scopus 로고    scopus 로고
    • Hessian Eigenmaps new tools for nonlinear dimensionality reduction
    • Donoho, D., and Grimes, C, Hessian Eigenmaps new tools for nonlinear dimensionality reduction, Proceedings of National Academy of Science,5591-5596, 2003.
    • (2003) Proceedings of National Academy of Science , vol.5591-5596
    • Donoho, D.1    Grimes, C.2
  • 4
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear Dimensionality Reduction by Locally Linear Embedding
    • Sam T. Roweis and Lawrence K. Saul. Nonlinear Dimensionality Reduction by Locally Linear Embedding, Science,2 90:2323-2326, 2000.
    • (2000) Science , vol.2 , Issue.90 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 7
    • 78649400333 scopus 로고    scopus 로고
    • Levina, E. and Bickel, P., Maximum Likelihood Estimation of Intrinsic Dimension. Advances in Neural Information Processing Systems17 (NIPS2004). MIT Press, 2005.
    • Levina, E. and Bickel, P., Maximum Likelihood Estimation of Intrinsic Dimension. Advances in Neural Information Processing Systems17 (NIPS2004). MIT Press, 2005.
  • 8
    • 3543131272 scopus 로고    scopus 로고
    • Geodesic entropic graphs for dimension and entropy estimation in manifold learning
    • Costa, J. and Hero, A. Geodesic entropic graphs for dimension and entropy estimation in manifold learning, IEEE Transactions on Signal Processing,52:2210-2221, 2004.
    • (2004) IEEE Transactions on Signal Processing , vol.52 , pp. 2210-2221
    • Costa, J.1    Hero, A.2
  • 10
    • 0015011520 scopus 로고
    • An algorithm for finding intrinsic dimensionality of data
    • Fukunaga, K., and Olsen, D. R., An algorithm for finding intrinsic dimensionality of data, IEEE Transactions on Computers 20(2) (1976) 165-171.
    • (1976) IEEE Transactions on Computers , vol.20 , Issue.2 , pp. 165-171
    • Fukunaga, K.1    Olsen, D.R.2
  • 12
    • 0016917031 scopus 로고
    • Statistical estimation of the intrinsic dimensionality of a noisy signal collection
    • Trunk, G. V., Statistical estimation of the intrinsic dimensionality of a noisy signal collection, IEEE Transaction on Computers 25 (1976) 165-171.
    • (1976) IEEE Transaction on Computers , vol.25 , pp. 165-171
    • Trunk, G.V.1
  • 14
    • 0036807213 scopus 로고    scopus 로고
    • Estimating the intrinsic dimension of data with a fractal-based approach
    • Camastra, F., and Vinciarelli, A., Estimating the intrinsic dimension of data with a fractal-based approach. IEEE Trans, on PAMI, 24(10): 1404-1407, 2002.
    • (2002) IEEE Trans, on PAMI , vol.24 , Issue.10 , pp. 1404-1407
    • Camastra, F.1    Vinciarelli, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.