-
1
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
Tenenbaum J.B., de Sliva V., and Landford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290 (2000) 2319-2323
-
(2000)
Science
, vol.290
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
de Sliva, V.2
Landford, J.C.3
-
4
-
-
0034704222
-
Nonlinear dimensionality reduction by local linear embedding
-
Roweis S.T., and Saul L.K. Nonlinear dimensionality reduction by local linear embedding. Science 290 (2000) 2323-2326
-
(2000)
Science
, vol.290
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
5
-
-
0042378381
-
Laplacian eigenmaps for dimensionality reduction and representation
-
Belkin M., and Niyogi P. Laplacian eigenmaps for dimensionality reduction and representation. Neural Comput. 15 (2003) 1373-1396
-
(2003)
Neural Comput.
, vol.15
, pp. 1373-1396
-
-
Belkin, M.1
Niyogi, P.2
-
6
-
-
0037948870
-
Hessian eigenmaps: new locally linear embedding techniques for high-dimensional data
-
Donoho D.L., and Grimes C. Hessian eigenmaps: new locally linear embedding techniques for high-dimensional data. Proc. Natl. Acad. Sci. USA 100 (2003) 5591-5596
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, pp. 5591-5596
-
-
Donoho, D.L.1
Grimes, C.2
-
7
-
-
0142025120
-
Data dimensionality estimation methods: a survey
-
Camastra F. Data dimensionality estimation methods: a survey. Pattern Recognition 36 (2003) 2945-2954
-
(2003)
Pattern Recognition
, vol.36
, pp. 2945-2954
-
-
Camastra, F.1
-
8
-
-
0015011520
-
An algorithm for finding intrinsic dimensionality of data
-
Fukunaga K., and Olsen D.R. An algorithm for finding intrinsic dimensionality of data. IEEE Trans. Comput. 20 (1971) 176-183
-
(1971)
IEEE Trans. Comput.
, vol.20
, pp. 176-183
-
-
Fukunaga, K.1
Olsen, D.R.2
-
9
-
-
0036807213
-
Estimating the intrinsic dimension of data with a fractal-based approach
-
Camastra F., and Vinciarelli A. Estimating the intrinsic dimension of data with a fractal-based approach. IEEE Trans. Pattern Anal. Mach. Intell. 24 (2002) 1404-1407
-
(2002)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.24
, pp. 1404-1407
-
-
Camastra, F.1
Vinciarelli, A.2
-
10
-
-
78649400333
-
-
E. Levina, P.J. Bickel, Maximum likelihood estimation of intrinsic dimension, in: Advances in Neural Information Processing Systems, vol. 17, MIT Press, Cambridge, MA, 2005.
-
E. Levina, P.J. Bickel, Maximum likelihood estimation of intrinsic dimension, in: Advances in Neural Information Processing Systems, vol. 17, MIT Press, Cambridge, MA, 2005.
-
-
-
-
12
-
-
0032070312
-
Intrinsic dimension estimation with optimal topology preserving maps
-
Bruske J., and Sommer G. Intrinsic dimension estimation with optimal topology preserving maps. IEEE Trans. Pattern Anal. Mach. Intell. 20 (1998) 572-575
-
(1998)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.20
, pp. 572-575
-
-
Bruske, J.1
Sommer, G.2
-
13
-
-
40749093037
-
Measuring the strangeness of strange attractors
-
Grassberger P., and Procaccia I. Measuring the strangeness of strange attractors. Physica D 9 (1983) 189-208
-
(1983)
Physica D
, vol.9
, pp. 189-208
-
-
Grassberger, P.1
Procaccia, I.2
-
14
-
-
0035425712
-
Intrinsic dimension estimation of data: an approach based on Grassberger-Procaccia's algorithms
-
Camastra F., and Vinciarelli A. Intrinsic dimension estimation of data: an approach based on Grassberger-Procaccia's algorithms. Neural Processing Lett. 14 (2001) 27-34
-
(2001)
Neural Processing Lett.
, vol.14
, pp. 27-34
-
-
Camastra, F.1
Vinciarelli, A.2
-
15
-
-
84898957854
-
-
B. Kegl, Intrinsic dimension estimation using packing numbers, in: Advances in Neural Information Processing Systems, vol. 15, MIT Press, Cambridge, MA, 2003.
-
B. Kegl, Intrinsic dimension estimation using packing numbers, in: Advances in Neural Information Processing Systems, vol. 15, MIT Press, Cambridge, MA, 2003.
-
-
-
-
16
-
-
31844456759
-
-
d, in: ICML 05: International Conference on Machine Learning, vol. 119, 2005, pp. 289-296.
-
d, in: ICML 05: International Conference on Machine Learning, vol. 119, 2005, pp. 289-296.
-
-
-
-
19
-
-
3543131272
-
Geodesic entropic graphs for dimension and entropy estimation in manifold learning
-
Costa J.A., and Hero A.O. Geodesic entropic graphs for dimension and entropy estimation in manifold learning. IEEE Trans. Signal Processing 52 (2004) 2210-2221
-
(2004)
IEEE Trans. Signal Processing
, vol.52
, pp. 2210-2221
-
-
Costa, J.A.1
Hero, A.O.2
-
20
-
-
33947102638
-
-
J.A. Costa, A.O. Hero, Estimating local intrinsic dimension with k-nearest neighbor graphs, in: IEEE Workshop on Statistical Signal Processing (SSP), Bordeaux, France, 2005, pp. 417-422.
-
J.A. Costa, A.O. Hero, Estimating local intrinsic dimension with k-nearest neighbor graphs, in: IEEE Workshop on Statistical Signal Processing (SSP), Bordeaux, France, 2005, pp. 417-422.
-
-
-
-
21
-
-
58249087092
-
-
D.J.C. MacKay, Z. Ghahramani, Comments on 'Maximum likelihood estimation of intrinsic dimension' by E. Levina and P. Bickel, 2005 〈inference.phy.cam.ac.uk/mackay/dimension〉.
-
D.J.C. MacKay, Z. Ghahramani, Comments on 'Maximum likelihood estimation of intrinsic dimension' by E. Levina and P. Bickel, 2005 〈inference.phy.cam.ac.uk/mackay/dimension〉.
-
-
-
-
23
-
-
58249085274
-
-
A.S. Weigend and N.A. Gershenfeld (Eds.), Time Series Prediction: Forecasting the Future and Understanding the Past, Addison-Wesley, Reading, MA, 1994.
-
A.S. Weigend and N.A. Gershenfeld (Eds.), Time Series Prediction: Forecasting the Future and Understanding the Past, Addison-Wesley, Reading, MA, 1994.
-
-
-
|