메뉴 건너뛰기




Volumn 42, Issue 5, 2009, Pages 780-787

Intrinsic dimension estimation of manifolds by incising balls

Author keywords

Data mining; Intrinsic dimension estimation; Manifold learning; Nonlinear dimensionality reduction

Indexed keywords

DATA MINING; FEATURE EXTRACTION; INFORMATION MANAGEMENT;

EID: 58249086377     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2008.09.016     Document Type: Article
Times cited : (48)

References (24)
  • 1
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J.B., de Sliva V., and Landford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290 (2000) 2319-2323
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Sliva, V.2    Landford, J.C.3
  • 4
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by local linear embedding
    • Roweis S.T., and Saul L.K. Nonlinear dimensionality reduction by local linear embedding. Science 290 (2000) 2323-2326
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 5
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and representation
    • Belkin M., and Niyogi P. Laplacian eigenmaps for dimensionality reduction and representation. Neural Comput. 15 (2003) 1373-1396
    • (2003) Neural Comput. , vol.15 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 6
    • 0037948870 scopus 로고    scopus 로고
    • Hessian eigenmaps: new locally linear embedding techniques for high-dimensional data
    • Donoho D.L., and Grimes C. Hessian eigenmaps: new locally linear embedding techniques for high-dimensional data. Proc. Natl. Acad. Sci. USA 100 (2003) 5591-5596
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 5591-5596
    • Donoho, D.L.1    Grimes, C.2
  • 7
    • 0142025120 scopus 로고    scopus 로고
    • Data dimensionality estimation methods: a survey
    • Camastra F. Data dimensionality estimation methods: a survey. Pattern Recognition 36 (2003) 2945-2954
    • (2003) Pattern Recognition , vol.36 , pp. 2945-2954
    • Camastra, F.1
  • 8
    • 0015011520 scopus 로고
    • An algorithm for finding intrinsic dimensionality of data
    • Fukunaga K., and Olsen D.R. An algorithm for finding intrinsic dimensionality of data. IEEE Trans. Comput. 20 (1971) 176-183
    • (1971) IEEE Trans. Comput. , vol.20 , pp. 176-183
    • Fukunaga, K.1    Olsen, D.R.2
  • 9
    • 0036807213 scopus 로고    scopus 로고
    • Estimating the intrinsic dimension of data with a fractal-based approach
    • Camastra F., and Vinciarelli A. Estimating the intrinsic dimension of data with a fractal-based approach. IEEE Trans. Pattern Anal. Mach. Intell. 24 (2002) 1404-1407
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , pp. 1404-1407
    • Camastra, F.1    Vinciarelli, A.2
  • 10
    • 78649400333 scopus 로고    scopus 로고
    • E. Levina, P.J. Bickel, Maximum likelihood estimation of intrinsic dimension, in: Advances in Neural Information Processing Systems, vol. 17, MIT Press, Cambridge, MA, 2005.
    • E. Levina, P.J. Bickel, Maximum likelihood estimation of intrinsic dimension, in: Advances in Neural Information Processing Systems, vol. 17, MIT Press, Cambridge, MA, 2005.
  • 12
    • 0032070312 scopus 로고    scopus 로고
    • Intrinsic dimension estimation with optimal topology preserving maps
    • Bruske J., and Sommer G. Intrinsic dimension estimation with optimal topology preserving maps. IEEE Trans. Pattern Anal. Mach. Intell. 20 (1998) 572-575
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , pp. 572-575
    • Bruske, J.1    Sommer, G.2
  • 13
    • 40749093037 scopus 로고
    • Measuring the strangeness of strange attractors
    • Grassberger P., and Procaccia I. Measuring the strangeness of strange attractors. Physica D 9 (1983) 189-208
    • (1983) Physica D , vol.9 , pp. 189-208
    • Grassberger, P.1    Procaccia, I.2
  • 14
    • 0035425712 scopus 로고    scopus 로고
    • Intrinsic dimension estimation of data: an approach based on Grassberger-Procaccia's algorithms
    • Camastra F., and Vinciarelli A. Intrinsic dimension estimation of data: an approach based on Grassberger-Procaccia's algorithms. Neural Processing Lett. 14 (2001) 27-34
    • (2001) Neural Processing Lett. , vol.14 , pp. 27-34
    • Camastra, F.1    Vinciarelli, A.2
  • 15
    • 84898957854 scopus 로고    scopus 로고
    • B. Kegl, Intrinsic dimension estimation using packing numbers, in: Advances in Neural Information Processing Systems, vol. 15, MIT Press, Cambridge, MA, 2003.
    • B. Kegl, Intrinsic dimension estimation using packing numbers, in: Advances in Neural Information Processing Systems, vol. 15, MIT Press, Cambridge, MA, 2003.
  • 16
    • 31844456759 scopus 로고    scopus 로고
    • d, in: ICML 05: International Conference on Machine Learning, vol. 119, 2005, pp. 289-296.
    • d, in: ICML 05: International Conference on Machine Learning, vol. 119, 2005, pp. 289-296.
  • 19
    • 3543131272 scopus 로고    scopus 로고
    • Geodesic entropic graphs for dimension and entropy estimation in manifold learning
    • Costa J.A., and Hero A.O. Geodesic entropic graphs for dimension and entropy estimation in manifold learning. IEEE Trans. Signal Processing 52 (2004) 2210-2221
    • (2004) IEEE Trans. Signal Processing , vol.52 , pp. 2210-2221
    • Costa, J.A.1    Hero, A.O.2
  • 20
    • 33947102638 scopus 로고    scopus 로고
    • J.A. Costa, A.O. Hero, Estimating local intrinsic dimension with k-nearest neighbor graphs, in: IEEE Workshop on Statistical Signal Processing (SSP), Bordeaux, France, 2005, pp. 417-422.
    • J.A. Costa, A.O. Hero, Estimating local intrinsic dimension with k-nearest neighbor graphs, in: IEEE Workshop on Statistical Signal Processing (SSP), Bordeaux, France, 2005, pp. 417-422.
  • 21
    • 58249087092 scopus 로고    scopus 로고
    • D.J.C. MacKay, Z. Ghahramani, Comments on 'Maximum likelihood estimation of intrinsic dimension' by E. Levina and P. Bickel, 2005 〈inference.phy.cam.ac.uk/mackay/dimension〉.
    • D.J.C. MacKay, Z. Ghahramani, Comments on 'Maximum likelihood estimation of intrinsic dimension' by E. Levina and P. Bickel, 2005 〈inference.phy.cam.ac.uk/mackay/dimension〉.
  • 23
    • 58249085274 scopus 로고    scopus 로고
    • A.S. Weigend and N.A. Gershenfeld (Eds.), Time Series Prediction: Forecasting the Future and Understanding the Past, Addison-Wesley, Reading, MA, 1994.
    • A.S. Weigend and N.A. Gershenfeld (Eds.), Time Series Prediction: Forecasting the Future and Understanding the Past, Addison-Wesley, Reading, MA, 1994.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.