메뉴 건너뛰기




Volumn 89, Issue 1-2, 2012, Pages 37-65

Novel high intrinsic dimensionality estimators

Author keywords

Dimensionality reduction; Intrinsic dimensionality estimation; Manifold learning

Indexed keywords

DATA SETS; DIMENSIONALITY ESTIMATION; DIMENSIONALITY REDUCTION; DIMENSIONALITY REDUCTION TECHNIQUES; ESTIMATION TECHNIQUES; GENERALIZATION CAPABILITY; HIDDEN UNITS; INFORMATION LOSS; MANIFOLD LEARNING; MIDDLE LAYER; MODEL ORDER; NEURAL NETWORK DESIGNS; NOISY DATA; OBJECTIVE EVALUATION; REAL DATA SETS; RELIABLE ESTIMATES; STATE-OF-THE-ART ALGORITHMS; STATISTICAL PROPERTIES; TIME SERIES PREDICTION;

EID: 84865202317     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-012-5294-7     Document Type: Article
Times cited : (89)

References (57)
  • 1
    • 34547866131 scopus 로고    scopus 로고
    • 2D and 3D face recognition: A survey
    • DOI 10.1016/j.patrec.2006.12.018, PII S0167865507000189, Image: Information and Control
    • A. F. Abate M. Nappi D. Riccio G. Sabatino 2007 2d and 3d face recognition: a survey Pattern Recognition Letters 28 1885 1906 10.1016/j.patrec.2006.12.018 (Pubitemid 47259204)
    • (2007) Pattern Recognition Letters , vol.28 , Issue.14 , pp. 1885-1906
    • Abate, A.F.1    Nappi, M.2    Riccio, D.3    Sabatino, G.4
  • 5
    • 0142025120 scopus 로고    scopus 로고
    • Data dimensionality estimation methods: A survey
    • DOI 10.1016/S0031-3203(03)00176-6
    • F. Camastra 2003 Data dimensionality estimation methods: a survey Pattern Recognition 36 12 2945 2954 1059.68100 10.1016/S0031-3203(03)00176-6 (Pubitemid 37293405)
    • (2003) Pattern Recognition , vol.36 , Issue.12 , pp. 2945-2954
    • Camastra, F.1
  • 6
    • 70350367551 scopus 로고    scopus 로고
    • A comparative evaluation of nonlinear dynamics methods for time series prediction
    • 10.1007/s00521-009-0266-y
    • F. Camastra M. Filippone 2009 A comparative evaluation of nonlinear dynamics methods for time series prediction Neural Computing & Applications 18 8 1021 1029 10.1007/s00521-009-0266-y
    • (2009) Neural Computing & Applications , vol.18 , Issue.8 , pp. 1021-1029
    • Camastra, F.1    Filippone, M.2
  • 7
    • 0036807213 scopus 로고    scopus 로고
    • Estimating the intrinsic dimension of data with a fractal-based method
    • DOI 10.1109/TPAMI.2002.1039212
    • F. Camastra A. Vinciarelli 2002 Estimating the intrinsic dimension of data with a fractal-based method IEEE Transactions on Pattern Analysis and Machine Intelligence 24 1404 1407 10.1109/TPAMI.2002.1039212 (Pubitemid 35327462)
    • (2002) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.24 , Issue.10 , pp. 1404-1407
    • Camastra, F.1    Vinciarelli, A.2
  • 8
    • 0034300875 scopus 로고    scopus 로고
    • A new LDA-based face recognition system which can solve the small sample size problem
    • 10.1016/S0031-3203(99)00139-9
    • L. Chen H. Liao M. Ko J. Lin G. Yu 2000 A new LDA-based face recognition system which can solve the small sample size problem Pattern Recognition 30 1713 1726 10.1016/S0031-3203(99)00139-9
    • (2000) Pattern Recognition , vol.30 , pp. 1713-1726
    • Chen, L.1    Liao, H.2    Ko, M.3    Lin, J.4    Yu, G.5
  • 9
    • 70449440398 scopus 로고    scopus 로고
    • Fast approximate kNN graph construction for high dimensional data via recursive Lanczos bisection
    • 1235.68137
    • J. Chen H. R. Fang Y. Saad 2009 Fast approximate kNN graph construction for high dimensional data via recursive Lanczos bisection Journal of Machine Learning Research 10 1989 2012 1235.68137
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 1989-2012
    • Chen, J.1    Fang, H.R.2    Saad, Y.3
  • 11
    • 57349084589 scopus 로고    scopus 로고
    • Tighter bounds for random projections of manifolds
    • M. Teillaud (eds). ACM New York
    • Clarkson, K. L. (2008). Tighter bounds for random projections of manifolds. In M. Teillaud (Ed.), Symposium on computational geometry (pp. 39-48). New York: ACM.
    • (2008) Symposium on Computational Geometry , pp. 39-48
    • Clarkson, K.L.1
  • 12
    • 0030303844 scopus 로고    scopus 로고
    • An interior, trust region approach for nonlinear minimization subject to bounds
    • 0855.65063 10.1137/0806023
    • T. F. Coleman Y. Li 1996 An interior, trust region approach for nonlinear minimization subject to bounds SIAM Journal on Optimization 6 418 445 0855.65063 10.1137/0806023
    • (1996) SIAM Journal on Optimization , vol.6 , pp. 418-445
    • Coleman, T.F.1    Li, Y.2
  • 13
    • 77952740883 scopus 로고    scopus 로고
    • Fast construction of k-nearest neighbor graphs for point clouds
    • 10.1109/TVCG.2010.9
    • M. Connor P. Kumar 2010 Fast construction of k-nearest neighbor graphs for point clouds IEEE Transactions on Visualization and Computer Graphics 16 4 599 608 10.1109/TVCG.2010.9
    • (2010) IEEE Transactions on Visualization and Computer Graphics , vol.16 , Issue.4 , pp. 599-608
    • Connor, M.1    Kumar, P.2
  • 14
    • 3543131272 scopus 로고    scopus 로고
    • Geodesic entropic graphs for dimension and entropy estimation in manifold learning
    • 10.1109/TSP.2004.831130
    • J. A. Costa A. O. Hero 2004 Geodesic entropic graphs for dimension and entropy estimation in manifold learning IEEE Transactions on Signal Processing 52 8 2210 2221 10.1109/TSP.2004.831130
    • (2004) IEEE Transactions on Signal Processing , vol.52 , Issue.8 , pp. 2210-2221
    • Costa, J.A.1    Hero, A.O.2
  • 16
    • 80052394522 scopus 로고    scopus 로고
    • Learning intrinsic dimension and entropy of shapes
    • H. Krim T. Yezzi (eds). Birkhäuser Basel
    • Costa, J. A., & Hero, A. O. (2005). Learning intrinsic dimension and entropy of shapes. In H. Krim & T. Yezzi (Eds.), Statistics and analysis of shapes. Basel: Birkhäuser.
    • (2005) Statistics and Analysis of Shapes
    • Costa, J.A.1    Hero, A.O.2
  • 17
    • 44049117207 scopus 로고
    • Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems
    • 0759.58030 10.1016/0167-2789(92)90023-G
    • J. P. Eckmann D. Ruelle 1992 Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems Physica D: Nonlinear Phenomena 56 2-3 185 187 0759.58030 10.1016/0167-2789(92)90023-G
    • (1992) Physica D: Nonlinear Phenomena , vol.56 , Issue.23 , pp. 185-187
    • Eckmann, J.P.1    Ruelle, D.2
  • 19
    • 0003489634 scopus 로고    scopus 로고
    • Monte Carlo: Concepts, algorithms, and applications
    • Springer New York 0859.65001
    • Fishman, G. S. (1996). Monte Carlo: concepts, algorithms, and applications. Springer series in operations research. New York: Springer.
    • (1996) Springer Series in Operations Research
    • Fishman, G.S.1
  • 21
    • 84887916087 scopus 로고
    • Regularized discriminant analysis
    • 10.1080/01621459.1989.10478752
    • J. H. Friedman 1989 Regularized discriminant analysis Journal of the American Statistical Association 84 165 175 10.1080/01621459.1989.10478752
    • (1989) Journal of the American Statistical Association , vol.84 , pp. 165-175
    • Friedman, J.H.1
  • 23
    • 0015011520 scopus 로고
    • An algorithm for finding intrinsic dimensionality of data
    • 0216.50201 10.1109/T-C.1971.223208
    • K. Fukunaga 1971 An algorithm for finding intrinsic dimensionality of data IEEE Transactions on Computers 20 176 183 0216.50201 10.1109/T-C.1971. 223208
    • (1971) IEEE Transactions on Computers , vol.20 , pp. 176-183
    • Fukunaga, K.1
  • 25
    • 40749093037 scopus 로고
    • Measuring the strangeness of strange attractors
    • 0593.58024 10.1016/0167-2789(83)90298-1
    • P. Grassberger I. Procaccia 1983 Measuring the strangeness of strange attractors Physica D: Nonlinear Phenomena 9 189 208 0593.58024 10.1016/0167-2789(83)90298-1
    • (1983) Physica D: Nonlinear Phenomena , vol.9 , pp. 189-208
    • Grassberger, P.1    Procaccia, I.2
  • 31
    • 85156237082 scopus 로고    scopus 로고
    • Intrinsic dimension estimation using packing numbers
    • S. Becker S. Thrun K. Obermayer (eds). MIT Press Cambridge
    • Kégl, B. (2002). Intrinsic dimension estimation using packing numbers. In S. Becker, S. Thrun, & K. Obermayer (Eds.), Proceedings of neural information processing systems (NIPS) (pp. 681-688). Cambridge: MIT Press.
    • (2002) Proceedings of Neural Information Processing Systems (NIPS) , pp. 681-688
    • Kégl, B.1
  • 34
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • 10.1109/5.726791
    • Y. LeCun L. Bottou Y. Bengio P. Haffner 1998 Gradient-based learning applied to document recognition Proceedings of the IEEE 86 11 2278 2324 10.1109/5.726791
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 40
    • 0001441372 scopus 로고
    • Probable networks and plausible predictions-a review of practical Bayesian methods for supervised neural networks
    • 0834.68098 10.1088/0954-898X/6/3/011
    • D. J. C. MacKay 1995 Probable networks and plausible predictions-a review of practical Bayesian methods for supervised neural networks Network: Computation in Neural Systems 6 3 469 505 0834.68098 10.1088/0954-898X/6/3/011
    • (1995) Network: Computation in Neural Systems , vol.6 , Issue.3 , pp. 469-505
    • MacKay, D.J.C.1
  • 42
    • 76749147912 scopus 로고    scopus 로고
    • Dimensionality estimation, manifold learning and function approximation using tensor voting
    • 1242.68239
    • P. Mordohai G. Medioni 2010 Dimensionality estimation, manifold learning and function approximation using tensor voting Journal of Machine Learning Research 11 411 450 1242.68239
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 411-450
    • Mordohai, P.1    Medioni, G.2
  • 43
    • 0003582543 scopus 로고
    • Cambridge University Press Cambridge 0792.58014
    • Ott, E. (1993). Chaos in dynamical systems. Cambridge: Cambridge University Press.
    • (1993) Chaos in Dynamical Systems
    • Ott, E.1
  • 47
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • DOI 10.1126/science.290.5500.2323
    • S. T. Roweis L. K. Saul 2000 Nonlinear dimensionality reduction by locally linear embedding Science 290 2323 2326 10.1126/science.290.5500.2323 (Pubitemid 32041578)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 52
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • DOI 10.1126/science.290.5500.2319
    • J. B. Tenenbaum V. Silva J. C. Langford 2000 A global geometric framework for nonlinear dimensionality reduction Science 290 2319 2323 10.1126/science.290.5500.2319 (Pubitemid 32041577)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 56
    • 39049106144 scopus 로고    scopus 로고
    • A nearest-neighbor approach to estimating divergence between continuous random vectors
    • DOI 10.1109/ISIT.2006.261842, 4035959, Proceedings - 2006 IEEE International Symposium on Information Theory, ISIT 2006
    • Wang, Q., Kulkarni, S. R., & Verdú, S. (2006). A nearest-neighbor approach to estimating divergence between continuous random vector. In IEEE international symposium on information theory (ISIT2006) (pp. 242-246). (Pubitemid 351244090)
    • (2006) IEEE International Symposium on Information Theory - Proceedings , pp. 242-246
    • Wang, Q.1    Kulkarni, S.R.2    Verdu, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.