메뉴 건너뛰기




Volumn 127, Issue , 2016, Pages 94-104

Feature selection and classification methodology for the detection of knee-joint disorders

Author keywords

Apriori algorithm; Biomedical signal processing; Feature selection; Genetic algorithm; Vibroarthographic signal; Wavelets

Indexed keywords

BIOINFORMATICS; BIOMEDICAL SIGNAL PROCESSING; CLASSIFICATION (OF INFORMATION); DECISION TREES; DIAGNOSTIC PRODUCTS; ENTROPY; GENETIC ALGORITHMS; JOINTS (ANATOMY); LEARNING ALGORITHMS; NONINVASIVE MEDICAL PROCEDURES; SIGNAL PROCESSING; SUPPORT VECTOR MACHINES; WAVELET DECOMPOSITION;

EID: 84985996957     PISSN: 01692607     EISSN: 18727565     Source Type: Journal    
DOI: 10.1016/j.cmpb.2016.01.020     Document Type: Article
Times cited : (67)

References (41)
  • 1
    • 85044299988 scopus 로고    scopus 로고
    • Orthopaedic Pathology, M – Medicine Series
    • Lippincott Williams & Wilkins
    • Vigorita, V., Ghelman, B., Mintz, D., Orthopaedic Pathology, M – Medicine Series. 2008, Lippincott Williams & Wilkins.
    • (2008)
    • Vigorita, V.1    Ghelman, B.2    Mintz, D.3
  • 2
    • 49949095544 scopus 로고    scopus 로고
    • Diagnostic and Surgical Imaging Anatomy: Knee, Ankle, Foot
    • Amirsys
    • Manaster, B., Crim, J., Rosenberg, Z., Diagnostic and Surgical Imaging Anatomy: Knee, Ankle, Foot. 2007, Amirsys.
    • (2007)
    • Manaster, B.1    Crim, J.2    Rosenberg, Z.3
  • 3
    • 0023185705 scopus 로고
    • Vibration arthrography as a diagnostic aid in diseases of the knee. A preliminary report
    • McCoy, G., McCrea, J., Beverland, D., Kernohan, W., Mollan, R., Vibration arthrography as a diagnostic aid in diseases of the knee. A preliminary report. J. Bone Jt. Surg. Br. 69-B:2 (1987), 288–293.
    • (1987) J. Bone Jt. Surg. Br. , vol.69-B , Issue.2 , pp. 288-293
    • McCoy, G.1    McCrea, J.2    Beverland, D.3    Kernohan, W.4    Mollan, R.5
  • 4
    • 84908048337 scopus 로고    scopus 로고
    • Knee Joint Vibroarthrographic Signal Processing and Analysis
    • Springer-Verlag
    • Wu, Y., Knee Joint Vibroarthrographic Signal Processing and Analysis. 2014, Springer-Verlag.
    • (2014)
    • Wu, Y.1
  • 5
    • 84875181177 scopus 로고    scopus 로고
    • Knee joint vibration signal analysis with matching pursuit decomposition and dynamic weighted classifier fusion
    • Cai, S., Yang, S., Zheng, F., Lu, M., Wu, Y., Krishnan, S., Knee joint vibration signal analysis with matching pursuit decomposition and dynamic weighted classifier fusion. Comput. Math. Methods Med., 2013, 10.1155/2013/904267.
    • (2013) Comput. Math. Methods Med.
    • Cai, S.1    Yang, S.2    Zheng, F.3    Lu, M.4    Wu, Y.5    Krishnan, S.6
  • 7
    • 61449166852 scopus 로고    scopus 로고
    • An enhanced algorithm for knee joint sound classification using feature extraction based on time-frequency analysis
    • Kim, K.S., Seo, J.H., Kang, J.U., Song, C.G., An enhanced algorithm for knee joint sound classification using feature extraction based on time-frequency analysis. Comput. Methods Progr. Biomed. 94:2 (2009), 198–206, 10.1016/j.cmpb.2008.12.012.
    • (2009) Comput. Methods Progr. Biomed. , vol.94 , Issue.2 , pp. 198-206
    • Kim, K.S.1    Seo, J.H.2    Kang, J.U.3    Song, C.G.4
  • 8
    • 84870467177 scopus 로고    scopus 로고
    • Fractal analysis of knee-joint vibroarthrographic signals via power spectral analysis
    • Rangayyan, R.M., Oloumi, F., Wu, Y., Cai, S., Fractal analysis of knee-joint vibroarthrographic signals via power spectral analysis. Biomed. Signal Process. Control 8 (2013), 23–29, 10.1016/j.bspc.2012.05.004.
    • (2013) Biomed. Signal Process. Control , vol.8 , pp. 23-29
    • Rangayyan, R.M.1    Oloumi, F.2    Wu, Y.3    Cai, S.4
  • 9
    • 84908019288 scopus 로고    scopus 로고
    • Representation of fluctuation features in pathological knee joint vibroarthrographic signals using kernel density modeling method
    • Yang, S., Cai, S., Zheng, F., Wu, Y., Liu, K., Wu, M., Zou, Q., Chen, J., Representation of fluctuation features in pathological knee joint vibroarthrographic signals using kernel density modeling method. Med. Eng. Phys. 36:10 (2014), 1305–1311.
    • (2014) Med. Eng. Phys. , vol.36 , Issue.10 , pp. 1305-1311
    • Yang, S.1    Cai, S.2    Zheng, F.3    Wu, Y.4    Liu, K.5    Wu, M.6    Zou, Q.7    Chen, J.8
  • 10
    • 84874657690 scopus 로고    scopus 로고
    • Wavelet-based sparse functional linear model with applications to EEGs seizure detection and epilepsy diagnosis
    • Xie, S., Krishnan, S., Wavelet-based sparse functional linear model with applications to EEGs seizure detection and epilepsy diagnosis. Med. Biol. Eng. Comput. 51:1–2 (2013), 49–60, 10.1007/s11517-012-0967-8.
    • (2013) Med. Biol. Eng. Comput. , vol.51 , Issue.1-2 , pp. 49-60
    • Xie, S.1    Krishnan, S.2
  • 11
    • 79151473975 scopus 로고    scopus 로고
    • Using support vector machines with a novel hybrid feature selection method for diagnosis of erythemato-squamous diseases
    • Xie, J., Wang, C., Using support vector machines with a novel hybrid feature selection method for diagnosis of erythemato-squamous diseases. Expert Syst. Appl. 38 (2011), 5809–5815, 10.1016/j.eswa.2010.10.050.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 5809-5815
    • Xie, J.1    Wang, C.2
  • 12
    • 64749086339 scopus 로고    scopus 로고
    • A wrapper method for feature selection using Support Vector Machines
    • Maldonado, S., Weber, R., A wrapper method for feature selection using Support Vector Machines. Inf. Sci. 179:13 (2009), 2208–2217, 10.1016/j.ins.2009.02.014.
    • (2009) Inf. Sci. , vol.179 , Issue.13 , pp. 2208-2217
    • Maldonado, S.1    Weber, R.2
  • 13
    • 67349107478 scopus 로고    scopus 로고
    • The search for optimal feature set in power quality event classification
    • Gunal, S., Gerek, O.N., Ece, D.G., Edizkan, R., The search for optimal feature set in power quality event classification. Expert Syst. Appl. 36 (2009), 10266–10273, 10.1016/j.eswa.2009.01.051.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 10266-10273
    • Gunal, S.1    Gerek, O.N.2    Ece, D.G.3    Edizkan, R.4
  • 15
    • 0028354598 scopus 로고
    • Dynamical assessment of physiological systems and states using recurrence plot strategies
    • Webber, C.L., Zbilut, J.P., Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. (Bethesda, Md.: 1985) 76 (1994), 965–973.
    • (1994) J. Appl. Physiol. (Bethesda, Md.: 1985) , vol.76 , pp. 965-973
    • Webber, C.L.1    Zbilut, J.P.2
  • 16
    • 0026015905 scopus 로고
    • Approximate entropy as a measure of system complexity
    • Pincus, S., Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. 88:6 (1991), 2297–2301, 10.1073/pnas.88.6.2297.
    • (1991) Proc. Natl. Acad. Sci. , vol.88 , Issue.6 , pp. 2297-2301
    • Pincus, S.1
  • 17
    • 0033949457 scopus 로고    scopus 로고
    • Physiological time-series analysis using approximate entropy and sample entropy
    • Richman, J.S., Moorman, J.R., Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278 (2000), H2039–H2049.
    • (2000) Am. J. Physiol. Heart Circ. Physiol. , vol.278 , pp. H2039-H2049
    • Richman, J.S.1    Moorman, J.R.2
  • 19
    • 0001882616 scopus 로고
    • Fast algorithms for mining association rules in large databases
    • Agrawal, R., Srikant, R., Fast algorithms for mining association rules in large databases. J. Comput. Sci. Technol. 15 (1994), 487–499, 10.1007/BF02948845.
    • (1994) J. Comput. Sci. Technol. , vol.15 , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 20
    • 0003722376 scopus 로고
    • Genetic Algorithms in Search, Optimization, and Machine Learning
    • Addison-We
    • Goldberg, D.E., Genetic Algorithms in Search, Optimization, and Machine Learning. 1989, Addison-We, 10.1007/s10589-009-9261-6.
    • (1989)
    • Goldberg, D.E.1
  • 23
    • 18244366112 scopus 로고    scopus 로고
    • Application of recurrence quantification analysis: influence of cognitive activity on postural fluctuations
    • M.A. Riley G.C. Van Orden
    • Pellecchia, G.L., Shockley, K., Application of recurrence quantification analysis: influence of cognitive activity on postural fluctuations. Riley, M.A., Van Orden, G.C., (eds.) Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences, 2005, 95–141.
    • (2005) Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences , pp. 95-141
    • Pellecchia, G.L.1    Shockley, K.2
  • 24
    • 0026569402 scopus 로고
    • Approximate entropy: a regularity measure for fetal heart rate analysis
    • Pincus, S.M., Viscarello, R.R., Approximate entropy: a regularity measure for fetal heart rate analysis. Obstet. Gynecol. 79 (1992), 249–255.
    • (1992) Obstet. Gynecol. , vol.79 , pp. 249-255
    • Pincus, S.M.1    Viscarello, R.R.2
  • 25
    • 34548820704 scopus 로고    scopus 로고
    • Use of sample entropy approach to study heart rate variability in obstructive sleep apnea syndrome
    • Al-Angari, H.M., Sahakian, A.V., Use of sample entropy approach to study heart rate variability in obstructive sleep apnea syndrome. IEEE Trans. Biomed. Eng. 54 (2007), 1900–1904, 10.1109/TBME.2006.889772.
    • (2007) IEEE Trans. Biomed. Eng. , vol.54 , pp. 1900-1904
    • Al-Angari, H.M.1    Sahakian, A.V.2
  • 26
    • 84865313417 scopus 로고    scopus 로고
    • Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine
    • Song, Y., Crowcroft, J., Zhang, J., Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine. J. Neurosci. Methods 210 (2012), 132–146, 10.1016/j.jneumeth.2012.07.003.
    • (2012) J. Neurosci. Methods , vol.210 , pp. 132-146
    • Song, Y.1    Crowcroft, J.2    Zhang, J.3
  • 27
    • 84878493700 scopus 로고    scopus 로고
    • The appropriate use of approximate entropy and sample entropy with short data sets
    • Yentes, J.M., Hunt, N., Schmid, K.K., Kaipust, J.P., McGrath, D., Stergiou, N., The appropriate use of approximate entropy and sample entropy with short data sets. Ann. Biomed. Eng. 41:2 (2013), 349–365, 10.1007/s10439-012-0668-3.
    • (2013) Ann. Biomed. Eng. , vol.41 , Issue.2 , pp. 349-365
    • Yentes, J.M.1    Hunt, N.2    Schmid, K.K.3    Kaipust, J.P.4    McGrath, D.5    Stergiou, N.6
  • 30
    • 77953123103 scopus 로고    scopus 로고
    • Novel maximum-margin training algorithms for supervised neural networks
    • Ludwig, O., Nunes, U., Novel maximum-margin training algorithms for supervised neural networks. IEEE Trans. Neural Netw. 21:6 (2010), 972–984, 10.1109/TNN.2010.2046423.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.6 , pp. 972-984
    • Ludwig, O.1    Nunes, U.2
  • 31
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • Vapnik, V.N., Chervonenkis, A.Y., On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl., 1971, 10.1137/1116025.
    • (1971) Theory Probab. Appl.
    • Vapnik, V.N.1    Chervonenkis, A.Y.2
  • 32
    • 11144336199 scopus 로고
    • The nature of statistical learning theory
    • Vapnik, V.N., The nature of statistical learning theory. IEEE Trans. Neural Netw., 8, 1995, 10.1109/TNN.1997.641482.
    • (1995) IEEE Trans. Neural Netw. , vol.8
    • Vapnik, V.N.1
  • 33
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens, J.A.K., Vandewalle, J., Least squares support vector machine classifiers. Neural Process. Lett. 9 (1999), 293–300, 10.1023/A:1018628609742.
    • (1999) Neural Process. Lett. , vol.9 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 35
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L., Random forests. Mach. Learn. 45 (2001), 5–32, 10.1023/A:1010933404324.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 36
    • 84900583659 scopus 로고    scopus 로고
    • Performance analysis of support vector machines classifiers in breast cancer mammography recognition
    • Azar, A.T., El-Said, S.A., Performance analysis of support vector machines classifiers in breast cancer mammography recognition. Neural Comput. Appl. 24:5 (2014), 1163–1177, 10.1007/s00521-012-1324-4.
    • (2014) Neural Comput. Appl. , vol.24 , Issue.5 , pp. 1163-1177
    • Azar, A.T.1    El-Said, S.A.2
  • 37
    • 39549097933 scopus 로고    scopus 로고
    • Screening of knee-joint vibroarthrographic signals using statistical parameters and radial basis functions
    • Rangayyan, R.M., Wu, Y.F., Screening of knee-joint vibroarthrographic signals using statistical parameters and radial basis functions. Med. Biol. Eng. Comput. 46 (2008), 223–232, 10.1007/s11517-007-0278-7.
    • (2008) Med. Biol. Eng. Comput. , vol.46 , pp. 223-232
    • Rangayyan, R.M.1    Wu, Y.F.2
  • 39
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Kohavi, R., A study of cross-validation and bootstrap for accuracy estimation and model selection. International Joint Conference on Artificial Intelligence, vol. 14, 1995, 1137–1143, 10.1067/mod.2000.109031.
    • (1995) International Joint Conference on Artificial Intelligence, vol. 14 , pp. 1137-1143
    • Kohavi, R.1
  • 40
    • 0027457620 scopus 로고
    • Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine [published erratum appears in Clin Chem 1993 Aug;39(8):1589]
    • Zweig, M.H., Campbell, G., Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine [published erratum appears in Clin Chem 1993 Aug;39(8):1589]. Clin. Chem. 39 (1993), 561–577.
    • (1993) Clin. Chem. , vol.39 , pp. 561-577
    • Zweig, M.H.1    Campbell, G.2
  • 41
    • 0034732869 scopus 로고    scopus 로고
    • Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests
    • Greiner, M., Pfeiffer, D., Smith, R.D., Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Prev. Vet. Med. 45 (2000), 23–41, 10.1016/S0167-5877(00)00115-X.
    • (2000) Prev. Vet. Med. , vol.45 , pp. 23-41
    • Greiner, M.1    Pfeiffer, D.2    Smith, R.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.