메뉴 건너뛰기




Volumn 174, Issue 1, 2010, Pages 169-183

Optimizing feature selection to improve medical diagnosis

Author keywords

Classification; Decision making; Feature selection; Medical diagnosis; Optimization

Indexed keywords


EID: 76649129353     PISSN: 02545330     EISSN: 15729338     Source Type: Journal    
DOI: 10.1007/s10479-008-0506-z     Document Type: Article
Times cited : (40)

References (21)
  • 2
    • 0002709342 scopus 로고    scopus 로고
    • Feature selection via concave minimization and support vector machines
    • San Francisco: Kaufmann
    • Bradley, P. S., & Mangasarian, O. L. (1998). Feature selection via concave minimization and support vector machines. In Proc. 15th international conf. on machine learning (pp. 82-90). San Francisco: Kaufmann.
    • (1998) Proc. 15th International Conf. On Machine Learning , pp. 82-90
    • Bradley, P.S.1    Mangasarian, O.L.2
  • 4
    • 33845312341 scopus 로고    scopus 로고
    • Electroencephalogram (EEG) time series classification: Applications in epilepsy
    • Chaovalitwongse, W., Pardalos, P., & Prokoyev, O. (2006). Electroencephalogram (EEG) time series classification: applications in epilepsy. Annals of Operations Research, 148, 227-250.
    • (2006) Annals of Operations Research , vol.148 , pp. 227-250
    • Chaovalitwongse, W.1    Pardalos, P.2    Prokoyev, O.3
  • 5
    • 61449214265 scopus 로고    scopus 로고
    • Novel optimization models for abnormal brain activity classification
    • to appear
    • Chaovalitwongse, W. A., Fan, Y. J., & Sachdeo, R. C. (2008, to appear). Novel optimization models for abnormal brain activity classification. Operations Research.
    • (2008) Operations Research
    • Chaovalitwongse, W.A.1    Fan, Y.J.2    Sachdeo, R.C.3
  • 6
    • 3543109140 scopus 로고    scopus 로고
    • A feature selection Newton method for support vector machine classification
    • Fung, G., & Mangasarian, O. L. (2002). A feature selection Newton method for support vector machine classification. Computational Optimization and Applications, 28, 185-202.
    • (2002) Computational Optimization and Applications , vol.28 , pp. 185-202
    • Fung, G.1    Mangasarian, O.L.2
  • 7
    • 0242288821 scopus 로고    scopus 로고
    • Finite Newton method for Lagrangian support vector machine classification
    • Fung, G., & Mangasarian, O. L. (2003). Finite Newton method for Lagrangian support vector machine classification. Neurocomputing, 1-2, 39-55.
    • (2003) Neurocomputing , vol.1-2 , pp. 39-55
    • Fung, G.1    Mangasarian, O.L.2
  • 8
    • 0037290520 scopus 로고    scopus 로고
    • An iterative mixed integer programming method for classification accuracy maximizing discriminant analysis
    • Glen, J. J. (2003). An iterative mixed integer programming method for classification accuracy maximizing discriminant analysis. Computers and Operations Research, 30, 181-198.
    • (2003) Computers and Operations Research , vol.30 , pp. 181-198
    • Glen, J.J.1
  • 9
    • 84985847276 scopus 로고
    • Improved linear programming models for discriminant analysis
    • Glover, F. (1990). Improved linear programming models for discriminant analysis. Decision Sciences, 21(4), 771-785.
    • (1990) Decision Sciences , vol.21 , Issue.4 , pp. 771-785
    • Glover, F.1
  • 11
    • 33748186432 scopus 로고    scopus 로고
    • Logical analysis of data-An overview: From combinatorial optimization to medical applications
    • Hammer, P. L., & Bonates, T. O. (2006). Logical analysis of data-An overview: From combinatorial optimization to medical applications. Annals of Operations Research, 148, 203-225.
    • (2006) Annals of Operations Research , vol.148 , pp. 203-225
    • Hammer, P.L.1    Bonates, T.O.2
  • 13
    • 76649092281 scopus 로고    scopus 로고
    • Controlling the false discovery rate for feature selection in high-resolution nmr spectra
    • Kim, S. B., Chen, V. C. P., Park, Y., Ziegler, T. R., & Jones, D. P. (2008). Controlling the false discovery rate for feature selection in high-resolution nmr spectra. Statistical Analysis and Data Mining, 1(2), 57-66.
    • (2008) Statistical Analysis and Data Mining , vol.1 , Issue.2 , pp. 57-66
    • Kim, S.B.1    Chen, V.C.P.2    Park, Y.3    Ziegler, T.R.4    Jones, D.P.5
  • 14
    • 0000963583 scopus 로고
    • Linear and nonlinear separation of pattern by linear programming
    • Mangasarian, O. (1965). Linear and nonlinear separation of pattern by linear programming. Operations Research, 31, 445-453.
    • (1965) Operations Research , vol.31 , pp. 445-453
    • Mangasarian, O.1
  • 18
    • 17844387127 scopus 로고    scopus 로고
    • Neighbor-weighted k-nearest neighbor for unbalanced text corpus
    • Tan, S. (2005). Neighbor-weighted k-nearest neighbor for unbalanced text corpus. Expert Systems with Applications, 28(4), 667-671.
    • (2005) Expert Systems with Applications , vol.28 , Issue.4 , pp. 667-671
    • Tan, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.