메뉴 건너뛰기




Volumn 126, Issue 5, 2016, Pages 1834-1856

Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors

(42)  Zhang, Gao a   Frederick, Dennie T b   Wu, Lawrence a   Wei, Zhi c   Krepler, Clemens a   Srinivasan, Satish d   Chae, Young Chan a   Xu, Xiaowei e   Choi, Harry a   Dimwamwa, Elaida a   Ope, Omotayo a   Shannan, Batool a   Basu, Devraj f,g   Zhang, Dongmei f   Guha, Manti d   Xiao, Min a   Randell, Sergio a   Sproesser, Katrin a   Xu, Wei e   Liu, Jephrey e   more..


Author keywords

[No Author keywords available]

Indexed keywords

B RAF KINASE; BINIMETINIB; ENCORAFENIB; GAMITRINIB; HEAT SHOCK PROTEIN 90 INHIBITOR; MITOCHONDRIAL DNA; MITOCHONDRIAL PROTEIN; MITOCHONDRIAL TRANSCRIPTION FACTOR A; MITOGEN ACTIVATED PROTEIN KINASE INHIBITOR; N (2,3 DIHYDROXYPROPOXY) 3,4 DIFLUORO 2 (2 FLUORO 4 IODOANILINO)BENZAMIDE; N [3 (5 CHLORO 1H PYRROLO[2,3 B]PYRIDINE 3 CARBONYL) 2,4 DIFLUOROPHENYL]PROPANESULFONAMIDE; PROTEIN TRAP1; UNCLASSIFIED DRUG; DNA BINDING PROTEIN; GAMITRINIB-G4; GUANIDINE DERIVATIVE; HEAT SHOCK PROTEIN 90; MACROCYCLIC LACTAM; MITOGEN ACTIVATED PROTEIN KINASE; PROTEIN KINASE INHIBITOR; TFAM PROTEIN, HUMAN; TRANSCRIPTION FACTOR; TRAP1 PROTEIN, HUMAN; TUMOR PROTEIN;

EID: 84988531155     PISSN: 00219738     EISSN: 15588238     Source Type: Journal    
DOI: 10.1172/JCI82661     Document Type: Article
Times cited : (216)

References (38)
  • 2
    • 18444374405 scopus 로고    scopus 로고
    • Mutations of the BRAF gene in human cancer
    • Davies H, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949-954.
    • (2002) Nature , vol.417 , Issue.6892 , pp. 949-954
    • Davies, H.1
  • 3
    • 84896714827 scopus 로고    scopus 로고
    • Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): Extended follow-up of a phase 3, randomised, open-label study
    • McArthur GA, et al. Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol. 2014;15(3):323-332.
    • (2014) Lancet Oncol , vol.15 , Issue.3 , pp. 323-332
    • McArthur, G.A.1
  • 4
    • 77956030786 scopus 로고    scopus 로고
    • Inhibition of mutated, activated BRAF in metastatic melanoma
    • Flaherty KT, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363(9):809-819.
    • (2010) N Engl J Med , vol.363 , Issue.9 , pp. 809-819
    • Flaherty, K.T.1
  • 5
    • 77956513286 scopus 로고    scopus 로고
    • Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma
    • Bollag G, et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 2010;467(7315):596-599.
    • (2010) Nature , vol.467 , Issue.7315 , pp. 596-599
    • Bollag, G.1
  • 6
    • 79959795786 scopus 로고    scopus 로고
    • Improved survival with vemurafenib in melanoma with BRAF V600E mutation
    • Chapman PB, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507-2516.
    • (2011) N Engl J Med , vol.364 , Issue.26 , pp. 2507-2516
    • Chapman, P.B.1
  • 7
    • 84863673204 scopus 로고    scopus 로고
    • Improved survival with MEK inhibition in BRAF-mutated melanoma
    • Flaherty KT, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012;367(2):107-114.
    • (2012) N Engl J Med , vol.367 , Issue.2 , pp. 107-114
    • Flaherty, K.T.1
  • 8
    • 84868224906 scopus 로고    scopus 로고
    • Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations
    • Flaherty KT, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 2012;367(18):1694-1703.
    • (2012) N Engl J Med , vol.367 , Issue.18 , pp. 1694-1703
    • Flaherty, K.T.1
  • 9
    • 84891898344 scopus 로고    scopus 로고
    • Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy
    • Shi H, et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 2014;4(1):80-93.
    • (2014) Cancer Discov , vol.4 , Issue.1 , pp. 80-93
    • Shi, H.1
  • 10
    • 84875717480 scopus 로고    scopus 로고
    • A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition
    • Whittaker SR, et al. A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. Cancer Discov. 2013;3(3):350-362.
    • (2013) Cancer Discov , vol.3 , Issue.3 , pp. 350-362
    • Whittaker, S.R.1
  • 11
    • 84878679199 scopus 로고    scopus 로고
    • A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence
    • Kaplon J, et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature. 2013;498(7452):109-112.
    • (2013) Nature , vol.498 , Issue.7452 , pp. 109-112
    • Kaplon, J.1
  • 12
    • 84875019584 scopus 로고    scopus 로고
    • BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition
    • Haq R, et al. BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition. Proc Natl Acad Sci U S A. 2013;110(11):4321-4326.
    • (2013) Proc Natl Acad Sci U S A , vol.110 , Issue.11 , pp. 4321-4326
    • Haq, R.1
  • 13
    • 84876436850 scopus 로고    scopus 로고
    • Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF
    • Haq R, et al. Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. Cancer Cell. 2013;23(3):302-315.
    • (2013) Cancer Cell , vol.23 , Issue.3 , pp. 302-315
    • Haq, R.1
  • 14
    • 84877124454 scopus 로고    scopus 로고
    • Melanoma adapts to RAF/MEK inhibitors through FOXD3-mediated upregulation of ERBB3
    • Abel EV, et al. Melanoma adapts to RAF/MEK inhibitors through FOXD3-mediated upregulation of ERBB3. J Clin Invest. 2013;123(5):2155-2168.
    • (2013) J Clin Invest , vol.123 , Issue.5 , pp. 2155-2168
    • Abel, E.V.1
  • 15
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: The next generation
    • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-674.
    • (2011) Cell , vol.144 , Issue.5 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 16
    • 77952502408 scopus 로고    scopus 로고
    • A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth
    • Roesch A, et al. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell. 2010;141(4):583-594.
    • (2010) Cell , vol.141 , Issue.4 , pp. 583-594
    • Roesch, A.1
  • 17
    • 84878959237 scopus 로고    scopus 로고
    • Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID-1B(high) cells
    • Roesch A, et al. Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID-1B(high) cells. Cancer Cell. 2013;23(6):811-825.
    • (2013) Cancer Cell , vol.23 , Issue.6 , pp. 811-825
    • Roesch, A.1
  • 18
    • 84876448550 scopus 로고    scopus 로고
    • PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress
    • Vazquez F, et al. PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell. 2013;23(3):287-301.
    • (2013) Cancer Cell , vol.23 , Issue.3 , pp. 287-301
    • Vazquez, F.1
  • 19
    • 84927583872 scopus 로고    scopus 로고
    • Tyrosine kinase inhibition in leukemia induces an altered metabolic state sensitive to mitochondrial perturbations
    • Alvarez-Calderon F, et al. Tyrosine kinase inhibition in leukemia induces an altered metabolic state sensitive to mitochondrial perturbations. Clin Cancer Res. 2015;21(6):1360-1372.
    • (2015) Clin Cancer Res , vol.21 , Issue.6 , pp. 1360-1372
    • Alvarez-Calderon, F.1
  • 20
    • 1542373685 scopus 로고    scopus 로고
    • Transcriptional regulatory circuits controlling mitochondrial biogenesis and function
    • Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004;18(4):357-368.
    • (2004) Genes Dev , vol.18 , Issue.4 , pp. 357-368
    • Kelly, D.P.1    Scarpulla, R.C.2
  • 21
    • 13444306450 scopus 로고    scopus 로고
    • Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators
    • Gleyzer N, Vercauteren K, Scarpulla RC. Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol Cell Biol. 2005;25(4):1354-1366.
    • (2005) Mol Cell Biol , vol.25 , Issue.4 , pp. 1354-1366
    • Gleyzer, N.1    Vercauteren, K.2    Scarpulla, R.C.3
  • 22
    • 73049113711 scopus 로고    scopus 로고
    • The accessory subunit of mitochondrial DNA polymerase gamma determines the DNA content of mitochondrial nucleoids in human cultured cells
    • Di Re M, et al. The accessory subunit of mitochondrial DNA polymerase gamma determines the DNA content of mitochondrial nucleoids in human cultured cells. Nucleic Acids Res. 2009;37(17):5701-5713.
    • (2009) Nucleic Acids Res , vol.37 , Issue.17 , pp. 5701-5713
    • Di Re, M.1
  • 23
    • 84891549568 scopus 로고    scopus 로고
    • Loss of prohibitin induces mitochondrial damages altering β-cell function and survival and is responsible for gradual diabetes development
    • Supale S, et al. Loss of prohibitin induces mitochondrial damages altering β-cell function and survival and is responsible for gradual diabetes development. Diabetes. 2013;62(10):3488-3499.
    • (2013) Diabetes , vol.62 , Issue.10 , pp. 3488-3499
    • Supale, S.1
  • 24
    • 79952585486 scopus 로고    scopus 로고
    • Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: Implications for selective neuronal damage
    • Shirendeb U, et al. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: implications for selective neuronal damage. Hum Mol Genet. 2011;20(7):1438-1455.
    • (2011) Hum Mol Genet , vol.20 , Issue.7 , pp. 1438-1455
    • Shirendeb, U.1
  • 25
    • 84859169877 scopus 로고    scopus 로고
    • The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
    • Barretina J, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603-607.
    • (2012) Nature , vol.483 , Issue.7391 , pp. 603-607
    • Barretina, J.1
  • 26
    • 77956285837 scopus 로고    scopus 로고
    • Integrative genome comparison of primary and metastatic melanomas
    • Kabbarah O, et al. Integrative genome comparison of primary and metastatic melanomas. PLoS One. 2010;5(5):e10770.
    • (2010) PLoS One , vol.5 , Issue.5 , pp. e10770
    • Kabbarah, O.1
  • 27
    • 84935009372 scopus 로고    scopus 로고
    • Cancer genome atlas network. Genomic classification of cutaneous melanoma
    • Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681-1696.
    • (2015) Cell , vol.161 , Issue.7 , pp. 1681-1696
  • 28
    • 84923880997 scopus 로고    scopus 로고
    • Interferon α/β enhances the cytotoxic response of MEK inhibition in melanoma
    • Litvin O, et al. Interferon α/β enhances the cytotoxic response of MEK inhibition in melanoma. Mol Cell. 2015;57(5):784-796.
    • (2015) Mol Cell , vol.57 , Issue.5 , pp. 784-796
    • Litvin, O.1
  • 29
    • 0035956929 scopus 로고    scopus 로고
    • Increased mitochondrial oxidative stress in the Sod2 (+/-) mouse results in the age-related decline of mitochondrial function culminating in increased apoptosis
    • Kokoszka JE, Coskun P, Esposito LA, Wallace DC. Increased mitochondrial oxidative stress in the Sod2 (+/-) mouse results in the age-related decline of mitochondrial function culminating in increased apoptosis. Proc Natl Acad Sci U S A. 2001;98(5):2278-2283.
    • (2001) Proc Natl Acad Sci U S A , vol.98 , Issue.5 , pp. 2278-2283
    • Kokoszka, J.E.1    Coskun, P.2    Esposito, L.A.3    Wallace, D.C.4
  • 30
    • 84911861458 scopus 로고    scopus 로고
    • Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function
    • Viale A, et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature. 2014;514(7524):628-632.
    • (2014) Nature , vol.514 , Issue.7524 , pp. 628-632
    • Viale, A.1
  • 31
    • 0025258481 scopus 로고
    • The mitochondrial chaperonin hsp60 is required for its own assembly
    • Cheng MY, Hartl FU, Horwich AL. The mitochondrial chaperonin hsp60 is required for its own assembly. Nature. 1990;348(6300):455-458.
    • (1990) Nature , vol.348 , Issue.6300 , pp. 455-458
    • Cheng, M.Y.1    Hartl, F.U.2    Horwich, A.L.3
  • 32
    • 81255192118 scopus 로고    scopus 로고
    • Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia
    • Skrtic M, et al. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell. 2011;20(5):674-688.
    • (2011) Cancer Cell , vol.20 , Issue.5 , pp. 674-688
    • Skrtic, M.1
  • 33
    • 2442431673 scopus 로고    scopus 로고
    • Mitochondrial transcription factor A regulates mtDNA copy number in mammals
    • Ekstrand MI, et al. Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum Mol Genet. 2004;13(9):935-944.
    • (2004) Hum Mol Genet , vol.13 , Issue.9 , pp. 935-944
    • Ekstrand, M.I.1
  • 34
    • 65649128567 scopus 로고    scopus 로고
    • Combinatorial drug design targeting multiple cancer signaling networks controlled by mitochondrial Hsp90
    • Kang BH, et al. Combinatorial drug design targeting multiple cancer signaling networks controlled by mitochondrial Hsp90. J Clin Invest. 2009;119(3):454-464.
    • (2009) J Clin Invest , vol.119 , Issue.3 , pp. 454-464
    • Kang, B.H.1
  • 35
    • 84880299429 scopus 로고    scopus 로고
    • Landscape of the mitochondrial Hsp90 metabolome in tumours
    • Chae YC, et al. Landscape of the mitochondrial Hsp90 metabolome in tumours. Nat Commun. 2013;4:2139.
    • (2013) Nat Commun , vol.4 , pp. 2139
    • Chae, Y.C.1
  • 36
    • 84866037559 scopus 로고    scopus 로고
    • Control of tumor bioenergetics and survival stress signaling by mitochondrial HSP90s
    • Chae YC, et al. Control of tumor bioenergetics and survival stress signaling by mitochondrial HSP90s. Cancer Cell. 2012;22(3):331-344.
    • (2012) Cancer Cell , vol.22 , Issue.3 , pp. 331-344
    • Chae, Y.C.1
  • 37
    • 84918582539 scopus 로고    scopus 로고
    • Inhibition of mTORC1/2 overcomes resistance to MAPK pathway inhibitors mediated by PGC1alpha and oxidative phosphorylation in melanoma
    • Gopal YN, et al. Inhibition of mTORC1/2 overcomes resistance to MAPK pathway inhibitors mediated by PGC1alpha and oxidative phosphorylation in melanoma. Cancer Res. 2014;74(23):7037-7047.
    • (2014) Cancer Res , vol.74 , Issue.23 , pp. 7037-7047
    • Gopal, Y.N.1
  • 38
    • 84875143073 scopus 로고    scopus 로고
    • BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells
    • Lagadinou ED, et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell. 2013;12(3):329-341.
    • (2013) Cell Stem Cell , vol.12 , Issue.3 , pp. 329-341
    • Lagadinou, E.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.