-
2
-
-
18444374405
-
Mutations of the BRAF gene in human cancer
-
Davies H, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949-954.
-
(2002)
Nature
, vol.417
, Issue.6892
, pp. 949-954
-
-
Davies, H.1
-
3
-
-
84896714827
-
Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): Extended follow-up of a phase 3, randomised, open-label study
-
McArthur GA, et al. Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol. 2014;15(3):323-332.
-
(2014)
Lancet Oncol
, vol.15
, Issue.3
, pp. 323-332
-
-
McArthur, G.A.1
-
4
-
-
77956030786
-
Inhibition of mutated, activated BRAF in metastatic melanoma
-
Flaherty KT, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363(9):809-819.
-
(2010)
N Engl J Med
, vol.363
, Issue.9
, pp. 809-819
-
-
Flaherty, K.T.1
-
5
-
-
77956513286
-
Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma
-
Bollag G, et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 2010;467(7315):596-599.
-
(2010)
Nature
, vol.467
, Issue.7315
, pp. 596-599
-
-
Bollag, G.1
-
6
-
-
79959795786
-
Improved survival with vemurafenib in melanoma with BRAF V600E mutation
-
Chapman PB, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507-2516.
-
(2011)
N Engl J Med
, vol.364
, Issue.26
, pp. 2507-2516
-
-
Chapman, P.B.1
-
7
-
-
84863673204
-
Improved survival with MEK inhibition in BRAF-mutated melanoma
-
Flaherty KT, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012;367(2):107-114.
-
(2012)
N Engl J Med
, vol.367
, Issue.2
, pp. 107-114
-
-
Flaherty, K.T.1
-
8
-
-
84868224906
-
Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations
-
Flaherty KT, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 2012;367(18):1694-1703.
-
(2012)
N Engl J Med
, vol.367
, Issue.18
, pp. 1694-1703
-
-
Flaherty, K.T.1
-
9
-
-
84891898344
-
Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy
-
Shi H, et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 2014;4(1):80-93.
-
(2014)
Cancer Discov
, vol.4
, Issue.1
, pp. 80-93
-
-
Shi, H.1
-
10
-
-
84875717480
-
A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition
-
Whittaker SR, et al. A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. Cancer Discov. 2013;3(3):350-362.
-
(2013)
Cancer Discov
, vol.3
, Issue.3
, pp. 350-362
-
-
Whittaker, S.R.1
-
11
-
-
84878679199
-
A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence
-
Kaplon J, et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature. 2013;498(7452):109-112.
-
(2013)
Nature
, vol.498
, Issue.7452
, pp. 109-112
-
-
Kaplon, J.1
-
12
-
-
84875019584
-
BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition
-
Haq R, et al. BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition. Proc Natl Acad Sci U S A. 2013;110(11):4321-4326.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, Issue.11
, pp. 4321-4326
-
-
Haq, R.1
-
13
-
-
84876436850
-
Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF
-
Haq R, et al. Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. Cancer Cell. 2013;23(3):302-315.
-
(2013)
Cancer Cell
, vol.23
, Issue.3
, pp. 302-315
-
-
Haq, R.1
-
14
-
-
84877124454
-
Melanoma adapts to RAF/MEK inhibitors through FOXD3-mediated upregulation of ERBB3
-
Abel EV, et al. Melanoma adapts to RAF/MEK inhibitors through FOXD3-mediated upregulation of ERBB3. J Clin Invest. 2013;123(5):2155-2168.
-
(2013)
J Clin Invest
, vol.123
, Issue.5
, pp. 2155-2168
-
-
Abel, E.V.1
-
15
-
-
79952284127
-
Hallmarks of cancer: The next generation
-
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-674.
-
(2011)
Cell
, vol.144
, Issue.5
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.A.2
-
16
-
-
77952502408
-
A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth
-
Roesch A, et al. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell. 2010;141(4):583-594.
-
(2010)
Cell
, vol.141
, Issue.4
, pp. 583-594
-
-
Roesch, A.1
-
17
-
-
84878959237
-
Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID-1B(high) cells
-
Roesch A, et al. Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID-1B(high) cells. Cancer Cell. 2013;23(6):811-825.
-
(2013)
Cancer Cell
, vol.23
, Issue.6
, pp. 811-825
-
-
Roesch, A.1
-
18
-
-
84876448550
-
PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress
-
Vazquez F, et al. PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell. 2013;23(3):287-301.
-
(2013)
Cancer Cell
, vol.23
, Issue.3
, pp. 287-301
-
-
Vazquez, F.1
-
19
-
-
84927583872
-
Tyrosine kinase inhibition in leukemia induces an altered metabolic state sensitive to mitochondrial perturbations
-
Alvarez-Calderon F, et al. Tyrosine kinase inhibition in leukemia induces an altered metabolic state sensitive to mitochondrial perturbations. Clin Cancer Res. 2015;21(6):1360-1372.
-
(2015)
Clin Cancer Res
, vol.21
, Issue.6
, pp. 1360-1372
-
-
Alvarez-Calderon, F.1
-
20
-
-
1542373685
-
Transcriptional regulatory circuits controlling mitochondrial biogenesis and function
-
Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004;18(4):357-368.
-
(2004)
Genes Dev
, vol.18
, Issue.4
, pp. 357-368
-
-
Kelly, D.P.1
Scarpulla, R.C.2
-
21
-
-
13444306450
-
Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators
-
Gleyzer N, Vercauteren K, Scarpulla RC. Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol Cell Biol. 2005;25(4):1354-1366.
-
(2005)
Mol Cell Biol
, vol.25
, Issue.4
, pp. 1354-1366
-
-
Gleyzer, N.1
Vercauteren, K.2
Scarpulla, R.C.3
-
22
-
-
73049113711
-
The accessory subunit of mitochondrial DNA polymerase gamma determines the DNA content of mitochondrial nucleoids in human cultured cells
-
Di Re M, et al. The accessory subunit of mitochondrial DNA polymerase gamma determines the DNA content of mitochondrial nucleoids in human cultured cells. Nucleic Acids Res. 2009;37(17):5701-5713.
-
(2009)
Nucleic Acids Res
, vol.37
, Issue.17
, pp. 5701-5713
-
-
Di Re, M.1
-
23
-
-
84891549568
-
Loss of prohibitin induces mitochondrial damages altering β-cell function and survival and is responsible for gradual diabetes development
-
Supale S, et al. Loss of prohibitin induces mitochondrial damages altering β-cell function and survival and is responsible for gradual diabetes development. Diabetes. 2013;62(10):3488-3499.
-
(2013)
Diabetes
, vol.62
, Issue.10
, pp. 3488-3499
-
-
Supale, S.1
-
24
-
-
79952585486
-
Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: Implications for selective neuronal damage
-
Shirendeb U, et al. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: implications for selective neuronal damage. Hum Mol Genet. 2011;20(7):1438-1455.
-
(2011)
Hum Mol Genet
, vol.20
, Issue.7
, pp. 1438-1455
-
-
Shirendeb, U.1
-
25
-
-
84859169877
-
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
-
Barretina J, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603-607.
-
(2012)
Nature
, vol.483
, Issue.7391
, pp. 603-607
-
-
Barretina, J.1
-
26
-
-
77956285837
-
Integrative genome comparison of primary and metastatic melanomas
-
Kabbarah O, et al. Integrative genome comparison of primary and metastatic melanomas. PLoS One. 2010;5(5):e10770.
-
(2010)
PLoS One
, vol.5
, Issue.5
, pp. e10770
-
-
Kabbarah, O.1
-
27
-
-
84935009372
-
Cancer genome atlas network. Genomic classification of cutaneous melanoma
-
Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681-1696.
-
(2015)
Cell
, vol.161
, Issue.7
, pp. 1681-1696
-
-
-
28
-
-
84923880997
-
Interferon α/β enhances the cytotoxic response of MEK inhibition in melanoma
-
Litvin O, et al. Interferon α/β enhances the cytotoxic response of MEK inhibition in melanoma. Mol Cell. 2015;57(5):784-796.
-
(2015)
Mol Cell
, vol.57
, Issue.5
, pp. 784-796
-
-
Litvin, O.1
-
29
-
-
0035956929
-
Increased mitochondrial oxidative stress in the Sod2 (+/-) mouse results in the age-related decline of mitochondrial function culminating in increased apoptosis
-
Kokoszka JE, Coskun P, Esposito LA, Wallace DC. Increased mitochondrial oxidative stress in the Sod2 (+/-) mouse results in the age-related decline of mitochondrial function culminating in increased apoptosis. Proc Natl Acad Sci U S A. 2001;98(5):2278-2283.
-
(2001)
Proc Natl Acad Sci U S A
, vol.98
, Issue.5
, pp. 2278-2283
-
-
Kokoszka, J.E.1
Coskun, P.2
Esposito, L.A.3
Wallace, D.C.4
-
30
-
-
84911861458
-
Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function
-
Viale A, et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature. 2014;514(7524):628-632.
-
(2014)
Nature
, vol.514
, Issue.7524
, pp. 628-632
-
-
Viale, A.1
-
31
-
-
0025258481
-
The mitochondrial chaperonin hsp60 is required for its own assembly
-
Cheng MY, Hartl FU, Horwich AL. The mitochondrial chaperonin hsp60 is required for its own assembly. Nature. 1990;348(6300):455-458.
-
(1990)
Nature
, vol.348
, Issue.6300
, pp. 455-458
-
-
Cheng, M.Y.1
Hartl, F.U.2
Horwich, A.L.3
-
32
-
-
81255192118
-
Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia
-
Skrtic M, et al. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell. 2011;20(5):674-688.
-
(2011)
Cancer Cell
, vol.20
, Issue.5
, pp. 674-688
-
-
Skrtic, M.1
-
33
-
-
2442431673
-
Mitochondrial transcription factor A regulates mtDNA copy number in mammals
-
Ekstrand MI, et al. Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum Mol Genet. 2004;13(9):935-944.
-
(2004)
Hum Mol Genet
, vol.13
, Issue.9
, pp. 935-944
-
-
Ekstrand, M.I.1
-
34
-
-
65649128567
-
Combinatorial drug design targeting multiple cancer signaling networks controlled by mitochondrial Hsp90
-
Kang BH, et al. Combinatorial drug design targeting multiple cancer signaling networks controlled by mitochondrial Hsp90. J Clin Invest. 2009;119(3):454-464.
-
(2009)
J Clin Invest
, vol.119
, Issue.3
, pp. 454-464
-
-
Kang, B.H.1
-
35
-
-
84880299429
-
Landscape of the mitochondrial Hsp90 metabolome in tumours
-
Chae YC, et al. Landscape of the mitochondrial Hsp90 metabolome in tumours. Nat Commun. 2013;4:2139.
-
(2013)
Nat Commun
, vol.4
, pp. 2139
-
-
Chae, Y.C.1
-
36
-
-
84866037559
-
Control of tumor bioenergetics and survival stress signaling by mitochondrial HSP90s
-
Chae YC, et al. Control of tumor bioenergetics and survival stress signaling by mitochondrial HSP90s. Cancer Cell. 2012;22(3):331-344.
-
(2012)
Cancer Cell
, vol.22
, Issue.3
, pp. 331-344
-
-
Chae, Y.C.1
-
37
-
-
84918582539
-
Inhibition of mTORC1/2 overcomes resistance to MAPK pathway inhibitors mediated by PGC1alpha and oxidative phosphorylation in melanoma
-
Gopal YN, et al. Inhibition of mTORC1/2 overcomes resistance to MAPK pathway inhibitors mediated by PGC1alpha and oxidative phosphorylation in melanoma. Cancer Res. 2014;74(23):7037-7047.
-
(2014)
Cancer Res
, vol.74
, Issue.23
, pp. 7037-7047
-
-
Gopal, Y.N.1
-
38
-
-
84875143073
-
BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells
-
Lagadinou ED, et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell. 2013;12(3):329-341.
-
(2013)
Cell Stem Cell
, vol.12
, Issue.3
, pp. 329-341
-
-
Lagadinou, E.D.1
|