메뉴 건너뛰기




Volumn , Issue , 2016, Pages 243-254

EIE: Efficient Inference Engine on Compressed Deep Neural Network

Author keywords

Algorithm Hardware co Design; ASIC; Deep Learning; Hardware Acceleration; Model Compression

Indexed keywords

APPLICATION SPECIFIC INTEGRATED CIRCUITS; BUDGET CONTROL; COMPUTER ARCHITECTURE; COMPUTER HARDWARE; DYNAMIC RANDOM ACCESS STORAGE; EMBEDDED SYSTEMS; ENERGY CONSERVATION; ENGINES; HARDWARE; NETWORK ARCHITECTURE; RECONFIGURABLE HARDWARE; STATIC RANDOM ACCESS STORAGE;

EID: 84988443578     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ISCA.2016.30     Document Type: Conference Paper
Times cited : (2598)

References (45)
  • 1
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 5
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 6
    • 84911198048 scopus 로고    scopus 로고
    • Deepface: Closing the gap to human-level performance in face verification
    • Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, "Deepface: Closing the gap to human-level performance in face verification," in CVPR. IEEE, 2014, pp. 1701-1708.
    • (2014) CVPR. IEEE , pp. 1701-1708
    • Taigman, Y.1    Yang, M.2    Ranzato, M.3    Wolf, L.4
  • 10
    • 84897780584 scopus 로고    scopus 로고
    • Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning
    • T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, "Diannao: a small-footprint high-throughput accelerator for ubiquitous machine-learning," in ASPLOS, 2014.
    • (2014) ASPLOS
    • Chen, T.1    Du, Z.2    Sun, N.3    Wang, J.4    Wu, C.5    Chen, Y.6    Temam, O.7
  • 13
    • 70450060046 scopus 로고    scopus 로고
    • Cnp: An FPGA-based processor for convolutional networks
    • C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, "Cnp: An FPGA-based processor for convolutional networks," in FPL, 2009.
    • (2009) FPL
    • Farabet, C.1    Poulet, C.2    Han, J.Y.3    LeCun, Y.4
  • 15
    • 84988345240 scopus 로고    scopus 로고
    • ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars
    • A. Shafiee and et al., "ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars," ISCA, 2016.
    • (2016) ISCA
    • Shafiee, A.1
  • 19
    • 27744588611 scopus 로고    scopus 로고
    • Framewise phoneme classification with bidirectional lstm and other neural network architectures
    • A. Graves and J. Schmidhuber, "Framewise phoneme classification with bidirectional lstm and other neural network architectures," Neural Networks, 2005.
    • (2005) Neural Networks
    • Graves, A.1    Schmidhuber, J.2
  • 21
    • 84898959963 scopus 로고    scopus 로고
    • A scalable sparse matrix-vector multiplication kernel for energy-efficient sparse-blas on FPGAs
    • Richard Dorrance and Fengbo Ren and Dejan Markovíc, "A Scalable Sparse Matrix-vector Multiplication Kernel for Energy-efficient Sparse-blas on FPGAs," in FPGA, 2014.
    • (2014) FPGA
    • Dorrance, R.1    Ren, F.2    Markovíc, D.3
  • 22
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted boltzmann machines
    • V. Nair and G. E. Hinton, "Rectified linear units improve restricted boltzmann machines," in ICML, 2010.
    • (2010) ICML
    • Nair, V.1    Hinton, G.E.2
  • 23
    • 85083950579 scopus 로고    scopus 로고
    • Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding
    • S. Han, H. Mao, and W. J. Dally, "Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding," International Conference on Learning Representations 2016.
    • (2016) International Conference on Learning Representations
    • Han, S.1    Mao, H.2    Dally, W.J.3
  • 31
    • 20344389052 scopus 로고    scopus 로고
    • Sparse matrix-vector multiplication on FPGAS
    • Ling Zhuo and Viktor K. Prasanna, "Sparse Matrix-Vector Multiplication on FPGAs," in FPGA, 2005.
    • (2005) FPGA
    • Zhuo, L.1    Prasanna, V.K.2
  • 34
    • 0000991092 scopus 로고
    • Comparing biases for minimal network construction with back-propagation
    • S. J. Hanson and L. Y. Pratt, "Comparing biases for minimal network construction with back-propagation," in NIPS, 1989.
    • (1989) NIPS
    • Hanson, S.J.1    Pratt, L.Y.2
  • 37
    • 84937896655 scopus 로고    scopus 로고
    • Exploiting linear structure within convolutional networks for efficient evaluation
    • E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, "Exploiting linear structure within convolutional networks for efficient evaluation," in NIPS 2014.
    • (2014) NIPS
    • Denton, E.L.1    Zaremba, W.2    Bruna, J.3    LeCun, Y.4    Fergus, R.5
  • 41
    • 84962921765 scopus 로고    scopus 로고
    • Optimizing FPGA-based accelerator design for deep convolutional neural networks
    • C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, "Optimizing FPGA-based accelerator design for deep convolutional neural networks," in FPGA, 2015.
    • (2015) FPGA
    • Zhang, C.1    Li, P.2    Sun, G.3    Guan, Y.4    Xiao, B.5    Cong, J.6
  • 42
    • 79955066714 scopus 로고    scopus 로고
    • Automatically tuning sparse matrix-vector multiplication for GPU architectures
    • Alexander Monakov and Anton Lokhmotov and Arutyun Avetisyan, "Automatically tuning sparse matrix-vector multiplication for GPU architectures," in HiPEAC, 2010.
    • (2010) HiPEAC
    • Monakov, A.1    Lokhmotov, A.2    Avetisyan, A.3
  • 45
    • 84912524416 scopus 로고    scopus 로고
    • A high memory bandwidth FPGA accelerator for sparse matrixvector multiplication
    • J. Fowers and K. Ovtcharov and K. Strauss and E.S. Chung and G. Stitt, "A high memory bandwidth FPGA accelerator for sparse matrixvector multiplication," in FCCM, 2014.
    • (2014) FCCM
    • Fowers, J.1    Ovtcharov, K.2    Strauss, K.3    Chung, E.S.4    Stitt, G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.