메뉴 건너뛰기




Volumn 49, Issue , 2016, Pages 676-686

A new fault classification approach applied to Tennessee Eastman benchmark process

Author keywords

Fault detection and isolation; Fuzzy Bayesian approach; Immune neural formulation; Tennessee Eastman benchmark process

Indexed keywords

FUZZY SET THEORY;

EID: 84987940143     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2016.08.040     Document Type: Article
Times cited : (46)

References (58)
  • 1
    • 0031148456 scopus 로고    scopus 로고
    • Trends in the application of model-based fault detection and diagnosis of technical processes
    • [1] Isermann, R., Balle, P., Trends in the application of model-based fault detection and diagnosis of technical processes. Control Eng. Pract. 5:5 (1997), 707–719.
    • (1997) Control Eng. Pract. , vol.5 , Issue.5 , pp. 707-719
    • Isermann, R.1    Balle, P.2
  • 2
    • 0037443770 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis – part I: quantitative model-based methods
    • [2] Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.N., A review of process fault detection and diagnosis – part I: quantitative model-based methods. Comput. Chem. Eng. 27:3 (2003), 293–311.
    • (2003) Comput. Chem. Eng. , vol.27 , Issue.3 , pp. 293-311
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Yin, K.3    Kavuri, S.N.4
  • 3
    • 0037443771 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis – part II: qualitative models and search strategies
    • [3] Venkatasubramanian, V., Rengaswamy, R., Kavuri, S.N., A review of process fault detection and diagnosis – part II: qualitative models and search strategies. Comput. Chem. Eng. 27:3 (2003), 313–326.
    • (2003) Comput. Chem. Eng. , vol.27 , Issue.3 , pp. 313-326
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Kavuri, S.N.3
  • 4
    • 0037443803 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis – part III: process history based methods
    • [4] Venkatasubramanian, V., Rengaswamy, R., Kavuri, S.N., Yin, K., A review of process fault detection and diagnosis – part III: process history based methods. Comput. Chem. Eng. 27:3 (2003), 327–346.
    • (2003) Comput. Chem. Eng. , vol.27 , Issue.3 , pp. 327-346
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Kavuri, S.N.3    Yin, K.4
  • 5
    • 0036332648 scopus 로고    scopus 로고
    • Observer-based robust fault detection of multirate linear system using a lift reformulation
    • [5] Fadali, M., Observer-based robust fault detection of multirate linear system using a lift reformulation. Comput. Electr. Eng. 29 (2003), 235–243.
    • (2003) Comput. Electr. Eng. , vol.29 , pp. 235-243
    • Fadali, M.1
  • 6
    • 85027942380 scopus 로고    scopus 로고
    • A novel approach to fault diagnosis for time-delay systems
    • [6] Yan, B., Wang, H., Wang, H., A novel approach to fault diagnosis for time-delay systems. Comput. Electr. Eng. 40 (2014), 2273–2284.
    • (2014) Comput. Electr. Eng. , vol.40 , pp. 2273-2284
    • Yan, B.1    Wang, H.2    Wang, H.3
  • 7
    • 33644619404 scopus 로고    scopus 로고
    • Passive robust fault detection using interval observers: application to the DAMADICS benchmark problem
    • [7] Puig, V., Stancu, A., Escobet, T., Nejjari, F., Quevedo, J., Patton, R., Passive robust fault detection using interval observers: application to the DAMADICS benchmark problem. Control Eng. Pract. 14:6 (2006), 621–633.
    • (2006) Control Eng. Pract. , vol.14 , Issue.6 , pp. 621-633
    • Puig, V.1    Stancu, A.2    Escobet, T.3    Nejjari, F.4    Quevedo, J.5    Patton, R.6
  • 8
    • 0029754361 scopus 로고    scopus 로고
    • Robust fault detection filter design
    • [8] Douglas, R.K., Speyer, J.L., Robust fault detection filter design. J. Guid. Control Dyn. 19:1 (1996), 214–218.
    • (1996) J. Guid. Control Dyn. , vol.19 , Issue.1 , pp. 214-218
    • Douglas, R.K.1    Speyer, J.L.2
  • 9
    • 0003746109 scopus 로고    scopus 로고
    • Robust Model-based Fault Diagnosis for Dynamic Systems
    • Kluwer Academic Publishers Dordrecht
    • [9] Chen, J., Patton, R.J., Robust Model-based Fault Diagnosis for Dynamic Systems. 1999, Kluwer Academic Publishers, Dordrecht.
    • (1999)
    • Chen, J.1    Patton, R.J.2
  • 10
    • 0032021644 scopus 로고    scopus 로고
    • Optimal filtering for systems with unknown inputs
    • [10] Hou, M., Patton, R.J., Optimal filtering for systems with unknown inputs. IEEE Trans. Autom. Control 43:3 (1998), 445–449.
    • (1998) IEEE Trans. Autom. Control , vol.43 , Issue.3 , pp. 445-449
    • Hou, M.1    Patton, R.J.2
  • 12
    • 0033321074 scopus 로고    scopus 로고
    • Unknown input observers for uncertain systems: a unifying approach
    • [12] Takahashi, R.H.C., Peres, P.L.D., Unknown input observers for uncertain systems: a unifying approach. Eur. J. Control 5:2–4 (1999), 261–275.
    • (1999) Eur. J. Control , vol.5 , Issue.2-4 , pp. 261-275
    • Takahashi, R.H.C.1    Peres, P.L.D.2
  • 13
    • 27844529438 scopus 로고    scopus 로고
    • Fault detection and identification for uncertain linear time-delay systems
    • [13] Jiang, C., Zhou, D.H., Fault detection and identification for uncertain linear time-delay systems. Comput. Chem. Eng. 30 (2005), 228–242.
    • (2005) Comput. Chem. Eng. , vol.30 , pp. 228-242
    • Jiang, C.1    Zhou, D.H.2
  • 16
    • 33746086651 scopus 로고    scopus 로고
    • Parity relations for linear uncertain dynamic systems
    • [16] Ploix, S., Adrot, O., Parity relations for linear uncertain dynamic systems. Automatica 42:9 (2006), 1553–1562.
    • (2006) Automatica , vol.42 , Issue.9 , pp. 1553-1562
    • Ploix, S.1    Adrot, O.2
  • 17
    • 0030257693 scopus 로고    scopus 로고
    • An algorithm for real-time failure detection in Kalman filters
    • [17] Zolghadri, A., An algorithm for real-time failure detection in Kalman filters. IEEE Trans. Autom. Control 41:10 (1996), 1537–1539.
    • (1996) IEEE Trans. Autom. Control , vol.41 , Issue.10 , pp. 1537-1539
    • Zolghadri, A.1
  • 18
    • 84922828154 scopus 로고    scopus 로고
    • Observer-based optimal fault-tolerant control for offshore platforms
    • [18] Zhang, B.-L., Feng, A.-M., Li, J., Observer-based optimal fault-tolerant control for offshore platforms. Comput. Electr. Eng. 40 (2014), 2204–2215.
    • (2014) Comput. Electr. Eng. , vol.40 , pp. 2204-2215
    • Zhang, B.-L.1    Feng, A.-M.2    Li, J.3
  • 20
    • 0034187633 scopus 로고    scopus 로고
    • A fuzzy expert system for fault detection in statistical process control of industrial processes
    • [20] El-Shal, S.M., Morris, A.S., A fuzzy expert system for fault detection in statistical process control of industrial processes. IEEE Trans. Syst. Man Cybern. C 30:2 (2000), 281–289.
    • (2000) IEEE Trans. Syst. Man Cybern. C , vol.30 , Issue.2 , pp. 281-289
    • El-Shal, S.M.1    Morris, A.S.2
  • 21
    • 62449207029 scopus 로고    scopus 로고
    • Intelligent automatic fault detection for actuator failures in aircraft
    • [22] Lo, C.H., Fung, E.H.K., Wong, Y.K., Intelligent automatic fault detection for actuator failures in aircraft. IEEE Trans. Ind. Inform. 5:1 (2009), 50–55.
    • (2009) IEEE Trans. Ind. Inform. , vol.5 , Issue.1 , pp. 50-55
    • Lo, C.H.1    Fung, E.H.K.2    Wong, Y.K.3
  • 23
    • 59649121926 scopus 로고    scopus 로고
    • Fuzzy model validation using the local statistical approach
    • [24] Rigatos, G., Zhang, Q., Fuzzy model validation using the local statistical approach. Fuzzy Sets Syst. 160:7 (2009), 882–904.
    • (2009) Fuzzy Sets Syst. , vol.160 , Issue.7 , pp. 882-904
    • Rigatos, G.1    Zhang, Q.2
  • 25
    • 33644614517 scopus 로고    scopus 로고
    • A GMDH neural network-based approach to robust fault diagnosis: application to the DAMADICS benchmark problem
    • [26] Witczak, M., Korbicz, J., Mrugalski, M., Patton, R.J., A GMDH neural network-based approach to robust fault diagnosis: application to the DAMADICS benchmark problem. Control Eng. Pract. 14:6 (2006), 671–683.
    • (2006) Control Eng. Pract. , vol.14 , Issue.6 , pp. 671-683
    • Witczak, M.1    Korbicz, J.2    Mrugalski, M.3    Patton, R.J.4
  • 26
    • 33644622316 scopus 로고    scopus 로고
    • Application of a novel fuzzy classifier to fault detection and isolation of the DAMADICS benchmark problem
    • [27] Bocaniala, C.D., da Costa, J.S., Application of a novel fuzzy classifier to fault detection and isolation of the DAMADICS benchmark problem. Control Eng. Pract. 14:6 (2006), 653–669.
    • (2006) Control Eng. Pract. , vol.14 , Issue.6 , pp. 653-669
    • Bocaniala, C.D.1    da Costa, J.S.2
  • 27
    • 31344452742 scopus 로고    scopus 로고
    • A signed directed graph-based systematic framework for steady-state malfunction diagnosis inside control loops
    • [28] Maurya, M.R., Rengaswamy, R., Venkatasubramanian, V., A signed directed graph-based systematic framework for steady-state malfunction diagnosis inside control loops. Chem. Eng. Sci. 61:6 (2006), 1790–1810.
    • (2006) Chem. Eng. Sci. , vol.61 , Issue.6 , pp. 1790-1810
    • Maurya, M.R.1    Rengaswamy, R.2    Venkatasubramanian, V.3
  • 28
    • 5444238517 scopus 로고    scopus 로고
    • Approximate estimation of system reliability via fault trees
    • [29] Dutuit, Y., Rauzy, A., Approximate estimation of system reliability via fault trees. Reliab. Eng. Syst. Saf. 87:2 (2005), 163–172.
    • (2005) Reliab. Eng. Syst. Saf. , vol.87 , Issue.2 , pp. 163-172
    • Dutuit, Y.1    Rauzy, A.2
  • 29
    • 33751399694 scopus 로고    scopus 로고
    • Fault diagnosis using dynamic trend analysis: a review and recent developments
    • [30] Maurya, M.R., Rengaswamy, R., Venkatasubramanian, V., Fault diagnosis using dynamic trend analysis: a review and recent developments. Eng. Appl. Artif. Intell. 20:2 (2007), 133–146.
    • (2007) Eng. Appl. Artif. Intell. , vol.20 , Issue.2 , pp. 133-146
    • Maurya, M.R.1    Rengaswamy, R.2    Venkatasubramanian, V.3
  • 31
    • 42949143535 scopus 로고    scopus 로고
    • Fault detection and identification with a new feature selection based on mutual information
    • [32] Verron, S., Tiplica, T., Kobi, A., Fault detection and identification with a new feature selection based on mutual information. J. Process Control 18:5 (2008), 479–490.
    • (2008) J. Process Control , vol.18 , Issue.5 , pp. 479-490
    • Verron, S.1    Tiplica, T.2    Kobi, A.3
  • 32
    • 77950296242 scopus 로고    scopus 로고
    • Design of an artificial immune system based on danger model for fault detection
    • [33] Laurentys, C.A., Palhares, R.M., Caminhas, W.M., Design of an artificial immune system based on danger model for fault detection. Expert Syst. Appl. 37:7 (2010), 5145–5152.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.7 , pp. 5145-5152
    • Laurentys, C.A.1    Palhares, R.M.2    Caminhas, W.M.3
  • 33
    • 79951581598 scopus 로고    scopus 로고
    • A novel artificial immune system for fault behavior detection
    • [34] Laurentys, C.A., Palhares, R.M., Caminhas, W.M., A novel artificial immune system for fault behavior detection. Expert Syst. Appl. 38:11 (2011), 6957–6966.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.11 , pp. 6957-6966
    • Laurentys, C.A.1    Palhares, R.M.2    Caminhas, W.M.3
  • 34
    • 84864454558 scopus 로고    scopus 로고
    • Immune inspired fault detection and diagnosis: a fuzzy-based approach of the negative selection algorithm and participatory clustering
    • [35] Silva, G.C., Palhares, R.M., Caminhas, W.M., Immune inspired fault detection and diagnosis: a fuzzy-based approach of the negative selection algorithm and participatory clustering. Expert Syst. Appl. 39:16 (2012), 12474–12486.
    • (2012) Expert Syst. Appl. , vol.39 , Issue.16 , pp. 12474-12486
    • Silva, G.C.1    Palhares, R.M.2    Caminhas, W.M.3
  • 35
    • 81855178279 scopus 로고    scopus 로고
    • Intelligent fault inference for rotating flexible rotors using Bayesian belief network
    • [36] Xu, B.G., Intelligent fault inference for rotating flexible rotors using Bayesian belief network. Expert Syst. Appl. 39:1 (2012), 816–822.
    • (2012) Expert Syst. Appl. , vol.39 , Issue.1 , pp. 816-822
    • Xu, B.G.1
  • 36
    • 77955511680 scopus 로고    scopus 로고
    • Fault detection and isolation of faults in a multivariate process with Bayesian network
    • [37] Verron, S., Li, J., Tiplica, T., Fault detection and isolation of faults in a multivariate process with Bayesian network. J. Process Control 20:8 (2010), 902–911.
    • (2010) J. Process Control , vol.20 , Issue.8 , pp. 902-911
    • Verron, S.1    Li, J.2    Tiplica, T.3
  • 37
    • 77957899141 scopus 로고    scopus 로고
    • Design of a pipeline leakage detection using expert system: a novel approach
    • [38] Laurentys, C.A., Bomfim, C.H.M., Menezes, B.R., Caminhas, W.M., Design of a pipeline leakage detection using expert system: a novel approach. Appl. Soft Comput. 11:1 (2011), 1057–1066.
    • (2011) Appl. Soft Comput. , vol.11 , Issue.1 , pp. 1057-1066
    • Laurentys, C.A.1    Bomfim, C.H.M.2    Menezes, B.R.3    Caminhas, W.M.4
  • 39
    • 84946594647 scopus 로고    scopus 로고
    • Data-driven fault detection and isolation scheme for a wind turbine benchmark
    • [40] de Bessa, I.V., Palhares, R.M., D'Angelo, M.F.S.V., Filho, J.E.C., Data-driven fault detection and isolation scheme for a wind turbine benchmark. Renew. Energy 87, Part 1 (2016), 634–645, 10.1016/j.renene.2015.10.061.
    • (2016) Renew. Energy , vol.87 Part 1 , pp. 634-645
    • de Bessa, I.V.1    Palhares, R.M.2    D'Angelo, M.F.S.V.3    Filho, J.E.C.4
  • 40
    • 84877316529 scopus 로고    scopus 로고
    • Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR)
    • [41] Rato, T.J., Reis, M.S., Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR). Chemom. Intell. Lab. Syst. 125 (2013), 101–108.
    • (2013) Chemom. Intell. Lab. Syst. , vol.125 , pp. 101-108
    • Rato, T.J.1    Reis, M.S.2
  • 41
    • 84952628377 scopus 로고    scopus 로고
    • SVM and PCA based fault classification approaches for complicated industrial process
    • [42] Jing, C., Hou, J., SVM and PCA based fault classification approaches for complicated industrial process. Neurocomputing 167 (2015), 636–642.
    • (2015) Neurocomputing , vol.167 , pp. 636-642
    • Jing, C.1    Hou, J.2
  • 43
    • 77957895607 scopus 로고    scopus 로고
    • Incipient fault detection in induction machine stator-winding using a fuzzy-Bayesian change point detection approach
    • [44] D'Angelo, M.F.S.V., Palhares, R.M., Takahashi, R.H.C., Loschi, R.H., Baccarini, L.M.R., Caminhas, W.M., Incipient fault detection in induction machine stator-winding using a fuzzy-Bayesian change point detection approach. Appl. Soft Comput. 11:1 (2011), 179–192.
    • (2011) Appl. Soft Comput. , vol.11 , Issue.1 , pp. 179-192
    • D'Angelo, M.F.S.V.1    Palhares, R.M.2    Takahashi, R.H.C.3    Loschi, R.H.4    Baccarini, L.M.R.5    Caminhas, W.M.6
  • 44
    • 0036613006 scopus 로고    scopus 로고
    • Learning and optimization using the clonal selection principle
    • [45] de Castro, L.N., Zuben, F.J.V., Learning and optimization using the clonal selection principle. IEEE Trans. Evolut. Comput. 6:3 (2002), 239–251.
    • (2002) IEEE Trans. Evolut. Comput. , vol.6 , Issue.3 , pp. 239-251
    • de Castro, L.N.1    Zuben, F.J.V.2
  • 46
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • [47] Downs, J., Vogel, E., A plant-wide industrial process control problem. Comput. Chem. Eng. 17:3 (1993), 245–255.
    • (1993) Comput. Chem. Eng. , vol.17 , Issue.3 , pp. 245-255
    • Downs, J.1    Vogel, E.2
  • 47
    • 84908320332 scopus 로고    scopus 로고
    • Benchmark problems for nonlinear system identification and control using soft computing methods: need and overview
    • [48] Kroll, A., Schulte, H., Benchmark problems for nonlinear system identification and control using soft computing methods: need and overview. Appl. Soft Comput. 25 (2014), 496–513.
    • (2014) Appl. Soft Comput. , vol.25 , pp. 496-513
    • Kroll, A.1    Schulte, H.2
  • 48
    • 77957925437 scopus 로고    scopus 로고
    • Designing a hierarchical neural network based on fuzzy clustering for fault diagnosis of the Tennessee-Eastman process
    • [49] Eslamloueyan, R., Designing a hierarchical neural network based on fuzzy clustering for fault diagnosis of the Tennessee-Eastman process. Appl. Soft Comput. 11:1 (2011), 1407–1415.
    • (2011) Appl. Soft Comput. , vol.11 , Issue.1 , pp. 1407-1415
    • Eslamloueyan, R.1
  • 49
    • 84906682676 scopus 로고    scopus 로고
    • Unsupervised feature selection based on fuzzy clustering for fault detection of the Tennessee Eastman process
    • J. Pavón N.D. Duque-Méndez R. Fuentes-Fernández Springer Berlin/Heidelberg
    • [50] Bedoya, C., Uribe, C., Isaza, C., Unsupervised feature selection based on fuzzy clustering for fault detection of the Tennessee Eastman process. Pavón, J., Duque-Méndez, N.D., Fuentes-Fernández, R., (eds.) Advances in Artificial Intelligence – IBERAMIA 2012, Vol. 7637 of Lecture Notes in Computer Science, 2012, Springer, Berlin/Heidelberg, 350–360, 10.1007/978-3-642-34654-5_36.
    • (2012) Advances in Artificial Intelligence – IBERAMIA 2012, Vol. 7637 of Lecture Notes in Computer Science , pp. 350-360
    • Bedoya, C.1    Uribe, C.2    Isaza, C.3
  • 50
    • 84868677902 scopus 로고    scopus 로고
    • Fault diagnosis of Tennessee Eastman process with multi-scale PCA and ANFIS
    • [51] Lau, C., Ghosh, K., Hussain, M., Hassan, C.C., Fault diagnosis of Tennessee Eastman process with multi-scale PCA and ANFIS. Chemom. Intell. Lab. Syst. 120 (2013), 1–14, 10.1016/j.chemolab.2012.10.005.
    • (2013) Chemom. Intell. Lab. Syst. , vol.120 , pp. 1-14
    • Lau, C.1    Ghosh, K.2    Hussain, M.3    Hassan, C.C.4
  • 51
    • 78651278889 scopus 로고    scopus 로고
    • Fault detection of the Tennessee Eastman process using improved PCA and neural classifier
    • Springer Science
    • [52] Nashalji, M.N., Shoorehdeli, M.A., Teshnehlab, M., Fault detection of the Tennessee Eastman process using improved PCA and neural classifier. Advances in Intelligent and Soft Computing, 2010, Springer Science, 41–50.
    • (2010) Advances in Intelligent and Soft Computing , pp. 41-50
    • Nashalji, M.N.1    Shoorehdeli, M.A.2    Teshnehlab, M.3
  • 52
    • 84940217905 scopus 로고    scopus 로고
    • Cognitive fault diagnosis in Tennessee Eastman process using learning in the model space
    • [53] Chen, H., Tiňo, P., Yao, X., Cognitive fault diagnosis in Tennessee Eastman process using learning in the model space. Comput. Chem. Eng. 67 (2014), 33–42.
    • (2014) Comput. Chem. Eng. , vol.67 , pp. 33-42
    • Chen, H.1    Tiňo, P.2    Yao, X.3
  • 53
    • 47949126201 scopus 로고    scopus 로고
    • Theoretical advances in artificial immune systems
    • [54] Timmis, J., Hone, A., Stibor, T., Clark, E., Theoretical advances in artificial immune systems. Theor. Comput. Sci. 403:1 (2008), 11–32.
    • (2008) Theor. Comput. Sci. , vol.403 , Issue.1 , pp. 11-32
    • Timmis, J.1    Hone, A.2    Stibor, T.3    Clark, E.4
  • 55
    • 84924569778 scopus 로고    scopus 로고
    • Probabilistic performance evaluation for multiclass classification using the posterior balanced accuracy
    • Springer
    • [56] Carrillo, H., Brodersen, K.H., Castellanos, J.A., Probabilistic performance evaluation for multiclass classification using the posterior balanced accuracy. ROBOT2013: First Iberian Robotics Conference, 2014, Springer, 347–361.
    • (2014) ROBOT2013: First Iberian Robotics Conference , pp. 347-361
    • Carrillo, H.1    Brodersen, K.H.2    Castellanos, J.A.3
  • 56
    • 0034621334 scopus 로고    scopus 로고
    • Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis
    • [57] Russell, E.L., Chiang, L.H., Braatz, R.D., Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis. Chemom. Intell. Lab. Syst. 51:1 (2000), 81–93.
    • (2000) Chemom. Intell. Lab. Syst. , vol.51 , Issue.1 , pp. 81-93
    • Russell, E.L.1    Chiang, L.H.2    Braatz, R.D.3
  • 57
    • 84989201203 scopus 로고    scopus 로고
    • Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation
    • [58] Powers, D.M., Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. J. Mach. Learn. Technol. 2:1 (2011), 37–63.
    • (2011) J. Mach. Learn. Technol. , vol.2 , Issue.1 , pp. 37-63
    • Powers, D.M.1
  • 58
    • 0004217877 scopus 로고
    • Information Retrieval
    • Butterworth
    • [59] van Rijsbergen, C., Information Retrieval. 1979, Butterworth.
    • (1979)
    • van Rijsbergen, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.