메뉴 건너뛰기




Volumn 87, Issue , 2016, Pages 634-645

Data-driven fault detection and isolation scheme for a wind turbine benchmark

Author keywords

Fault detection and isolation (FDI); Fuzzy Bayesian networks; Gibbs sampling; Wind turbines

Indexed keywords

BAYESIAN NETWORKS; BENCHMARKING; FUZZY LOGIC; INFERENCE ENGINES; TIME SERIES; TIME SERIES ANALYSIS; WIND TURBINES;

EID: 84946594647     PISSN: 09601481     EISSN: 18790682     Source Type: Journal    
DOI: 10.1016/j.renene.2015.10.061     Document Type: Article
Times cited : (72)

References (31)
  • 1
    • 84934970769 scopus 로고    scopus 로고
    • Time-frequency analysis based on vold-kalman filter and higher order energy separation for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions
    • Feng Z., Qin S., Liang M. Time-frequency analysis based on vold-kalman filter and higher order energy separation for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions. Renew. Energy 2016, 85:45-56. 10.1016/j.renene.2015.06.041.
    • (2016) Renew. Energy , vol.85 , pp. 45-56
    • Feng, Z.1    Qin, S.2    Liang, M.3
  • 2
    • 84893056423 scopus 로고    scopus 로고
    • Fault diagnosis of wind turbine planetary gearbox under nonstationary conditions via adaptive optimal kernel time-frequency analysis
    • Feng Z., Liang M. Fault diagnosis of wind turbine planetary gearbox under nonstationary conditions via adaptive optimal kernel time-frequency analysis. Renew. Energy 2014, 66:468-477. 10.1016/j.renene.2013.12.047.
    • (2014) Renew. Energy , vol.66 , pp. 468-477
    • Feng, Z.1    Liang, M.2
  • 3
    • 84921324828 scopus 로고    scopus 로고
    • Dynamic response analysis on torsional vibrations of wind turbine geared transmission system with uncertainty
    • Wei S., Zhao J., Han Q., Chu F. Dynamic response analysis on torsional vibrations of wind turbine geared transmission system with uncertainty. Renew. Energy 2015, 78:60-67. 10.1016/j.renene.2014.12.062.
    • (2015) Renew. Energy , vol.78 , pp. 60-67
    • Wei, S.1    Zhao, J.2    Han, Q.3    Chu, F.4
  • 4
    • 53049083760 scopus 로고    scopus 로고
    • Condition monitoring and fault detection of wind turbines and related algorithms: a review
    • Hameed Z., Hong Y., Cho Y., Ahn S., Song C. Condition monitoring and fault detection of wind turbines and related algorithms: a review. Renew. Sustain. Energy Rev. 2009, 13(1):1-39. http://dx.doi.org/10.1016/j.rser.2007.05.008.
    • (2009) Renew. Sustain. Energy Rev. , vol.13 , Issue.1 , pp. 1-39
    • Hameed, Z.1    Hong, Y.2    Cho, Y.3    Ahn, S.4    Song, C.5
  • 6
    • 85027943020 scopus 로고    scopus 로고
    • A comparative study of three fault diagnosis schemes for wind turbines
    • Dey S., Pisu P. A comparative study of three fault diagnosis schemes for wind turbines. IEEE Trans. Control Syst. Technol. 2015, 23(5):1853-1868. 10.1109/TCST.2015.2389713.
    • (2015) IEEE Trans. Control Syst. Technol. , vol.23 , Issue.5 , pp. 1853-1868
    • Dey, S.1    Pisu, P.2
  • 7
    • 84864580162 scopus 로고    scopus 로고
    • Fault detection of wind turbines with uncertain parameters: a set-membership approach
    • Tabatabaeipour S.M., Odgaard P.F., Bak T., Stoustrup J. Fault detection of wind turbines with uncertain parameters: a set-membership approach. Energies 2012, 5(7):2424-2448. 10.3390/en5072424.
    • (2012) Energies , vol.5 , Issue.7 , pp. 2424-2448
    • Tabatabaeipour, S.M.1    Odgaard, P.F.2    Bak, T.3    Stoustrup, J.4
  • 9
    • 84922506120 scopus 로고    scopus 로고
    • Fault-tolerant control of discrete-time lpv systems using virtual actuators and sensors
    • Tabatabaeipour S.M., Stoustrup J., Bak T. Fault-tolerant control of discrete-time lpv systems using virtual actuators and sensors. Int. J. Robust Nonlinear Control 2015, 25(5):707-734. 10.1002/rnc.3194.
    • (2015) Int. J. Robust Nonlinear Control , vol.25 , Issue.5 , pp. 707-734
    • Tabatabaeipour, S.M.1    Stoustrup, J.2    Bak, T.3
  • 10
    • 84918549122 scopus 로고    scopus 로고
    • An active fault tolerant control approach to an offshore wind turbine model
    • Shi F., Patton R. An active fault tolerant control approach to an offshore wind turbine model. Renew. Energy 2015, 75:788-798. 10.1016/j.renene.2014.10.061.
    • (2015) Renew. Energy , vol.75 , pp. 788-798
    • Shi, F.1    Patton, R.2
  • 11
    • 84879936035 scopus 로고    scopus 로고
    • Fault-tolerant control of wind turbines: a benchmark model
    • Odgaard P., Stoustrup J., Kinnaert M. Fault-tolerant control of wind turbines: a benchmark model. IEEE Trans. Control Syst. Technol. 2013, 21(4):1168-1182. 10.1109/TCST.2013.2259235.
    • (2013) IEEE Trans. Control Syst. Technol. , vol.21 , Issue.4 , pp. 1168-1182
    • Odgaard, P.1    Stoustrup, J.2    Kinnaert, M.3
  • 14
    • 33947670511 scopus 로고    scopus 로고
    • Survey of failures in wind power systems with focus on swedish wind power plants during 1997-2005
    • Ribrant J., Bertling L.M. Survey of failures in wind power systems with focus on swedish wind power plants during 1997-2005. IEEE Trans. Energy Convers. 2007, 22(1):167-173. http://dx.doi.org/10.1016/j.rser.2007.05.008.
    • (2007) IEEE Trans. Energy Convers. , vol.22 , Issue.1 , pp. 167-173
    • Ribrant, J.1    Bertling, L.M.2
  • 15
    • 84864584628 scopus 로고    scopus 로고
    • Wind turbine fault detection using counter-based residual thresholding
    • Ozdemir A.A., Seiler P., Balas G.J. Wind turbine fault detection using counter-based residual thresholding. Proceedings of the 18th IFAC World Congress 2011, vol. 18:8289-8294. 10.3182/20110828-6-IT-1002.01758.
    • (2011) Proceedings of the 18th IFAC World Congress , vol.18 , pp. 8289-8294
    • Ozdemir, A.A.1    Seiler, P.2    Balas, G.J.3
  • 17
    • 84856433628 scopus 로고    scopus 로고
    • Automated design of an FDI system for the wind turbine benchmark
    • Svärd C., Nyberg M. Automated design of an FDI system for the wind turbine benchmark. J. Control Sci. Eng. 2012, 10.1155/2012/989873.
    • (2012) J. Control Sci. Eng.
    • Svärd, C.1    Nyberg, M.2
  • 18
    • 84922439110 scopus 로고    scopus 로고
    • Wind turbine simulator fault diagnosis via fuzzy modeling and identification techniques
    • Simani S., Farsoni S., Castaldi P. Wind turbine simulator fault diagnosis via fuzzy modeling and identification techniques. Sustain. Energy Grids Netw. 2015, 1:45-52. 10.1016/j.segan.2014.12.001.
    • (2015) Sustain. Energy Grids Netw. , vol.1 , pp. 45-52
    • Simani, S.1    Farsoni, S.2    Castaldi, P.3
  • 19
    • 79751491467 scopus 로고    scopus 로고
    • The prediction and diagnosis of wind turbine faults
    • Kusiak A., Li W. The prediction and diagnosis of wind turbine faults. Renew. Energy 2011, 36(1):16-23. 10.1016/j.renene.2010.05.014.
    • (2011) Renew. Energy , vol.36 , Issue.1 , pp. 16-23
    • Kusiak, A.1    Li, W.2
  • 20
    • 84928681088 scopus 로고    scopus 로고
    • An SVM-based solution for fault detection in wind turbines
    • Santos P., Villa L., ReÃśones A., Bustillo A., Maudes J. An SVM-based solution for fault detection in wind turbines. Sensors (Switz.) 2015, 15(3):5627-5648. 10.3390/s150305627.
    • (2015) Sensors (Switz.) , vol.15 , Issue.3 , pp. 5627-5648
    • Santos, P.1    Villa, L.2    ReÃśones, A.3    Bustillo, A.4    Maudes, J.5
  • 22
    • 84902331756 scopus 로고    scopus 로고
    • Combination of model-based observer and support vector machines for fault detection of wind turbines
    • Laouti N., Othman S., Alamir M., Sheibat-Othman N. Combination of model-based observer and support vector machines for fault detection of wind turbines. Int. J. Autom. Comput. 2014, 11(3):274-287. 10.1007/s11633-014-0790-9.
    • (2014) Int. J. Autom. Comput. , vol.11 , Issue.3 , pp. 274-287
    • Laouti, N.1    Othman, S.2    Alamir, M.3    Sheibat-Othman, N.4
  • 23
    • 84901052346 scopus 로고    scopus 로고
    • Data-driven design of robust fault detection system for wind turbines
    • Yin S., Wang G., Karimi H.R. Data-driven design of robust fault detection system for wind turbines. Mechatronics 2014, 24(4):298-306. 10.1016/j.mechatronics.2013.11.009.
    • (2014) Mechatronics , vol.24 , Issue.4 , pp. 298-306
    • Yin, S.1    Wang, G.2    Karimi, H.R.3
  • 26
    • 77957895607 scopus 로고    scopus 로고
    • Incipient fault detection in induction machine stator-winding using a fuzzy-Bayesian change point detection approach
    • D'Angelo M.F.S.V., Palhares R.M., Takahashi R.H., Loschi R.H., Baccarini L.M., Caminhas W.M. Incipient fault detection in induction machine stator-winding using a fuzzy-Bayesian change point detection approach. Appl. Soft Comput. 2011, 11(1):179-192. 10.1016/j.asoc.2009.11.008.
    • (2011) Appl. Soft Comput. , vol.11 , Issue.1 , pp. 179-192
    • D'Angelo, M.F.S.V.1    Palhares, R.M.2    Takahashi, R.H.3    Loschi, R.H.4    Baccarini, L.M.5    Caminhas, W.M.6
  • 29
    • 84899094364 scopus 로고    scopus 로고
    • Geometric ergodicity of the Gibbs sampler for the Poisson change-point model
    • Fitzpatrick M. Geometric ergodicity of the Gibbs sampler for the Poisson change-point model. Stat. Probab. Lett. 2014, 91:55-61. 10.1016/j.spl.2014.04.008.
    • (2014) Stat. Probab. Lett. , vol.91 , pp. 55-61
    • Fitzpatrick, M.1
  • 30
    • 84856550969 scopus 로고    scopus 로고
    • Applications of Bayesian methods in wind energy conversion systems
    • Li G., Shi J. Applications of Bayesian methods in wind energy conversion systems. Renew. Energy 2012, 43:1-8. 10.1016/j.renene.2011.12.006.
    • (2012) Renew. Energy , vol.43 , pp. 1-8
    • Li, G.1    Shi, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.