-
1
-
-
84934970769
-
Time-frequency analysis based on vold-kalman filter and higher order energy separation for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions
-
Feng Z., Qin S., Liang M. Time-frequency analysis based on vold-kalman filter and higher order energy separation for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions. Renew. Energy 2016, 85:45-56. 10.1016/j.renene.2015.06.041.
-
(2016)
Renew. Energy
, vol.85
, pp. 45-56
-
-
Feng, Z.1
Qin, S.2
Liang, M.3
-
2
-
-
84893056423
-
Fault diagnosis of wind turbine planetary gearbox under nonstationary conditions via adaptive optimal kernel time-frequency analysis
-
Feng Z., Liang M. Fault diagnosis of wind turbine planetary gearbox under nonstationary conditions via adaptive optimal kernel time-frequency analysis. Renew. Energy 2014, 66:468-477. 10.1016/j.renene.2013.12.047.
-
(2014)
Renew. Energy
, vol.66
, pp. 468-477
-
-
Feng, Z.1
Liang, M.2
-
3
-
-
84921324828
-
Dynamic response analysis on torsional vibrations of wind turbine geared transmission system with uncertainty
-
Wei S., Zhao J., Han Q., Chu F. Dynamic response analysis on torsional vibrations of wind turbine geared transmission system with uncertainty. Renew. Energy 2015, 78:60-67. 10.1016/j.renene.2014.12.062.
-
(2015)
Renew. Energy
, vol.78
, pp. 60-67
-
-
Wei, S.1
Zhao, J.2
Han, Q.3
Chu, F.4
-
4
-
-
53049083760
-
Condition monitoring and fault detection of wind turbines and related algorithms: a review
-
Hameed Z., Hong Y., Cho Y., Ahn S., Song C. Condition monitoring and fault detection of wind turbines and related algorithms: a review. Renew. Sustain. Energy Rev. 2009, 13(1):1-39. http://dx.doi.org/10.1016/j.rser.2007.05.008.
-
(2009)
Renew. Sustain. Energy Rev.
, vol.13
, Issue.1
, pp. 1-39
-
-
Hameed, Z.1
Hong, Y.2
Cho, Y.3
Ahn, S.4
Song, C.5
-
5
-
-
84870015442
-
Observer based detection of sensor faults in wind turbines
-
Odgaard P., Stoustrup J., Nielsen R., Damgaard C. Observer based detection of sensor faults in wind turbines. Proceedings of European Wind Energy Conference and Exhibition 2009 2009, vol. 7:4421-4430.
-
(2009)
Proceedings of European Wind Energy Conference and Exhibition 2009
, vol.7
, pp. 4421-4430
-
-
Odgaard, P.1
Stoustrup, J.2
Nielsen, R.3
Damgaard, C.4
-
6
-
-
85027943020
-
A comparative study of three fault diagnosis schemes for wind turbines
-
Dey S., Pisu P. A comparative study of three fault diagnosis schemes for wind turbines. IEEE Trans. Control Syst. Technol. 2015, 23(5):1853-1868. 10.1109/TCST.2015.2389713.
-
(2015)
IEEE Trans. Control Syst. Technol.
, vol.23
, Issue.5
, pp. 1853-1868
-
-
Dey, S.1
Pisu, P.2
-
7
-
-
84864580162
-
Fault detection of wind turbines with uncertain parameters: a set-membership approach
-
Tabatabaeipour S.M., Odgaard P.F., Bak T., Stoustrup J. Fault detection of wind turbines with uncertain parameters: a set-membership approach. Energies 2012, 5(7):2424-2448. 10.3390/en5072424.
-
(2012)
Energies
, vol.5
, Issue.7
, pp. 2424-2448
-
-
Tabatabaeipour, S.M.1
Odgaard, P.F.2
Bak, T.3
Stoustrup, J.4
-
8
-
-
84919626721
-
A set-valued approach to fdi and ftc of wind turbines
-
Casau P., Rosa P., Tabatabaeipour S., Silvestre C., Stoustrup J. A set-valued approach to fdi and ftc of wind turbines. IEEE Trans. Control Syst. Technol. 2015, 23(1):245-263. 10.1109/TCST.2014.2322777.
-
(2015)
IEEE Trans. Control Syst. Technol.
, vol.23
, Issue.1
, pp. 245-263
-
-
Casau, P.1
Rosa, P.2
Tabatabaeipour, S.3
Silvestre, C.4
Stoustrup, J.5
-
9
-
-
84922506120
-
Fault-tolerant control of discrete-time lpv systems using virtual actuators and sensors
-
Tabatabaeipour S.M., Stoustrup J., Bak T. Fault-tolerant control of discrete-time lpv systems using virtual actuators and sensors. Int. J. Robust Nonlinear Control 2015, 25(5):707-734. 10.1002/rnc.3194.
-
(2015)
Int. J. Robust Nonlinear Control
, vol.25
, Issue.5
, pp. 707-734
-
-
Tabatabaeipour, S.M.1
Stoustrup, J.2
Bak, T.3
-
10
-
-
84918549122
-
An active fault tolerant control approach to an offshore wind turbine model
-
Shi F., Patton R. An active fault tolerant control approach to an offshore wind turbine model. Renew. Energy 2015, 75:788-798. 10.1016/j.renene.2014.10.061.
-
(2015)
Renew. Energy
, vol.75
, pp. 788-798
-
-
Shi, F.1
Patton, R.2
-
11
-
-
84879936035
-
Fault-tolerant control of wind turbines: a benchmark model
-
Odgaard P., Stoustrup J., Kinnaert M. Fault-tolerant control of wind turbines: a benchmark model. IEEE Trans. Control Syst. Technol. 2013, 21(4):1168-1182. 10.1109/TCST.2013.2259235.
-
(2013)
IEEE Trans. Control Syst. Technol.
, vol.21
, Issue.4
, pp. 1168-1182
-
-
Odgaard, P.1
Stoustrup, J.2
Kinnaert, M.3
-
14
-
-
33947670511
-
Survey of failures in wind power systems with focus on swedish wind power plants during 1997-2005
-
Ribrant J., Bertling L.M. Survey of failures in wind power systems with focus on swedish wind power plants during 1997-2005. IEEE Trans. Energy Convers. 2007, 22(1):167-173. http://dx.doi.org/10.1016/j.rser.2007.05.008.
-
(2007)
IEEE Trans. Energy Convers.
, vol.22
, Issue.1
, pp. 167-173
-
-
Ribrant, J.1
Bertling, L.M.2
-
15
-
-
84864584628
-
Wind turbine fault detection using counter-based residual thresholding
-
Ozdemir A.A., Seiler P., Balas G.J. Wind turbine fault detection using counter-based residual thresholding. Proceedings of the 18th IFAC World Congress 2011, vol. 18:8289-8294. 10.3182/20110828-6-IT-1002.01758.
-
(2011)
Proceedings of the 18th IFAC World Congress
, vol.18
, pp. 8289-8294
-
-
Ozdemir, A.A.1
Seiler, P.2
Balas, G.J.3
-
16
-
-
84864584624
-
Observer-based FDI schemes for wind turbine benchmark
-
Chen W., Ding S., Haghani A., Naik A., Khan A., Yin S. Observer-based FDI schemes for wind turbine benchmark. Proceedings of the 18th IFAC World Congress 2011, vol. 18:7073-7078. 10.3182/20110828-6-IT-1002.03469.
-
(2011)
Proceedings of the 18th IFAC World Congress
, vol.18
, pp. 7073-7078
-
-
Chen, W.1
Ding, S.2
Haghani, A.3
Naik, A.4
Khan, A.5
Yin, S.6
-
17
-
-
84856433628
-
Automated design of an FDI system for the wind turbine benchmark
-
Svärd C., Nyberg M. Automated design of an FDI system for the wind turbine benchmark. J. Control Sci. Eng. 2012, 10.1155/2012/989873.
-
(2012)
J. Control Sci. Eng.
-
-
Svärd, C.1
Nyberg, M.2
-
18
-
-
84922439110
-
Wind turbine simulator fault diagnosis via fuzzy modeling and identification techniques
-
Simani S., Farsoni S., Castaldi P. Wind turbine simulator fault diagnosis via fuzzy modeling and identification techniques. Sustain. Energy Grids Netw. 2015, 1:45-52. 10.1016/j.segan.2014.12.001.
-
(2015)
Sustain. Energy Grids Netw.
, vol.1
, pp. 45-52
-
-
Simani, S.1
Farsoni, S.2
Castaldi, P.3
-
19
-
-
79751491467
-
The prediction and diagnosis of wind turbine faults
-
Kusiak A., Li W. The prediction and diagnosis of wind turbine faults. Renew. Energy 2011, 36(1):16-23. 10.1016/j.renene.2010.05.014.
-
(2011)
Renew. Energy
, vol.36
, Issue.1
, pp. 16-23
-
-
Kusiak, A.1
Li, W.2
-
20
-
-
84928681088
-
An SVM-based solution for fault detection in wind turbines
-
Santos P., Villa L., ReÃśones A., Bustillo A., Maudes J. An SVM-based solution for fault detection in wind turbines. Sensors (Switz.) 2015, 15(3):5627-5648. 10.3390/s150305627.
-
(2015)
Sensors (Switz.)
, vol.15
, Issue.3
, pp. 5627-5648
-
-
Santos, P.1
Villa, L.2
ReÃśones, A.3
Bustillo, A.4
Maudes, J.5
-
22
-
-
84902331756
-
Combination of model-based observer and support vector machines for fault detection of wind turbines
-
Laouti N., Othman S., Alamir M., Sheibat-Othman N. Combination of model-based observer and support vector machines for fault detection of wind turbines. Int. J. Autom. Comput. 2014, 11(3):274-287. 10.1007/s11633-014-0790-9.
-
(2014)
Int. J. Autom. Comput.
, vol.11
, Issue.3
, pp. 274-287
-
-
Laouti, N.1
Othman, S.2
Alamir, M.3
Sheibat-Othman, N.4
-
23
-
-
84901052346
-
Data-driven design of robust fault detection system for wind turbines
-
Yin S., Wang G., Karimi H.R. Data-driven design of robust fault detection system for wind turbines. Mechatronics 2014, 24(4):298-306. 10.1016/j.mechatronics.2013.11.009.
-
(2014)
Mechatronics
, vol.24
, Issue.4
, pp. 298-306
-
-
Yin, S.1
Wang, G.2
Karimi, H.R.3
-
25
-
-
84901641517
-
Fault detection in dynamic systems by a fuzzy/Bayesian network formulation
-
D'Angelo M.F.S.V., Palhares R.M., Cosme L.B., Aguiar L.A., Fonseca F.S., Caminhas W.M. Fault detection in dynamic systems by a fuzzy/Bayesian network formulation. Appl. Soft Comput. 2014, 21:647-653. 10.1016/j.asoc.2014.04.007.
-
(2014)
Appl. Soft Comput.
, vol.21
, pp. 647-653
-
-
D'Angelo, M.F.S.V.1
Palhares, R.M.2
Cosme, L.B.3
Aguiar, L.A.4
Fonseca, F.S.5
Caminhas, W.M.6
-
26
-
-
77957895607
-
Incipient fault detection in induction machine stator-winding using a fuzzy-Bayesian change point detection approach
-
D'Angelo M.F.S.V., Palhares R.M., Takahashi R.H., Loschi R.H., Baccarini L.M., Caminhas W.M. Incipient fault detection in induction machine stator-winding using a fuzzy-Bayesian change point detection approach. Appl. Soft Comput. 2011, 11(1):179-192. 10.1016/j.asoc.2009.11.008.
-
(2011)
Appl. Soft Comput.
, vol.11
, Issue.1
, pp. 179-192
-
-
D'Angelo, M.F.S.V.1
Palhares, R.M.2
Takahashi, R.H.3
Loschi, R.H.4
Baccarini, L.M.5
Caminhas, W.M.6
-
27
-
-
79960894135
-
Fuzzy/Bayesian change point detection approach to incipient fault detection
-
D'Angelo M.F.S.V., Palhares R.M., Takahashi R.H.C., Loschi R.H. Fuzzy/Bayesian change point detection approach to incipient fault detection. IET Control Theory & Appl. 2011, 5(4):539. 10.1049/iet-cta.2009.0033.
-
(2011)
IET Control Theory & Appl.
, vol.5
, Issue.4
, pp. 539
-
-
D'Angelo, M.F.S.V.1
Palhares, R.M.2
Takahashi, R.H.C.3
Loschi, R.H.4
-
29
-
-
84899094364
-
Geometric ergodicity of the Gibbs sampler for the Poisson change-point model
-
Fitzpatrick M. Geometric ergodicity of the Gibbs sampler for the Poisson change-point model. Stat. Probab. Lett. 2014, 91:55-61. 10.1016/j.spl.2014.04.008.
-
(2014)
Stat. Probab. Lett.
, vol.91
, pp. 55-61
-
-
Fitzpatrick, M.1
-
30
-
-
84856550969
-
Applications of Bayesian methods in wind energy conversion systems
-
Li G., Shi J. Applications of Bayesian methods in wind energy conversion systems. Renew. Energy 2012, 43:1-8. 10.1016/j.renene.2011.12.006.
-
(2012)
Renew. Energy
, vol.43
, pp. 1-8
-
-
Li, G.1
Shi, J.2
|