메뉴 건너뛰기




Volumn 9837, Issue , 2016, Pages

Learning object models from few examples

Author keywords

Ground robots; Learning; Object recognition

Indexed keywords

OBJECT RECOGNITION;

EID: 84987784595     PISSN: 0277786X     EISSN: 1996756X     Source Type: Conference Proceeding    
DOI: 10.1117/12.2231108     Document Type: Conference Paper
Times cited : (1)

References (61)
  • 2
  • 3
    • 84887363653 scopus 로고    scopus 로고
    • Discriminative segment annotation in weakly labeled video
    • Tang, K., Sukthankar, R., Yagnik, J., Fei-Fei, L.: Discriminative segment annotation in weakly labeled video. In: CVPR. (2013)
    • (2013) CVPR
    • Tang, K.1    Sukthankar, R.2    Yagnik, J.3    Fei-Fei, L.4
  • 6
    • 84887395819 scopus 로고    scopus 로고
    • Discriminative decorrelation for clustering and classification
    • Hariharan, B., Malik, J., Ramanan, D.: Discriminative decorrelation for clustering and classification. In: ECCV. (2012)
    • (2012) ECCV
    • Hariharan, B.1    Malik, J.2    Ramanan, D.3
  • 9
    • 35348895580 scopus 로고    scopus 로고
    • Semi-supervised self-training of object detection models
    • Rosenberg, C., Hebert, M., Schneiderman, H.: Semi-supervised self-training of object detection models. In: WACV. (2005)
    • (2005) WACV
    • Rosenberg, C.1    Hebert, M.2    Schneiderman, H.3
  • 10
    • 51849168866 scopus 로고    scopus 로고
    • Representing shape with a spatial pyramid kernel
    • Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. In: CVPR. (2007)
    • (2007) CVPR
    • Bosch, A.1    Zisserman, A.2    Munoz, X.3
  • 11
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR. (2005)
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 12
    • 68949141755 scopus 로고    scopus 로고
    • A least-squares approach to direct importance estimation
    • Kanamori, T., Hido, S., Sugiyama, M.: A least-squares approach to direct importance estimation. JMLR (2009)
    • (2009) JMLR
    • Kanamori, T.1    Hido, S.2    Sugiyama, M.3
  • 13
    • 0002836012 scopus 로고
    • An iterative image registration technique with an application to stereo vision
    • Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Image Understanding Workshop. (1981)
    • (1981) Image Understanding Workshop
    • Lucas, B.D.1    Kanade, T.2
  • 14
    • 78149481816 scopus 로고    scopus 로고
    • Forward-backward error: Automatic detection of tracking failures
    • Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: ICPR. (2010)
    • (2010) ICPR
    • Kalal, Z.1    Mikolajczyk, K.2    Matas, J.3
  • 15
    • 80054897941 scopus 로고    scopus 로고
    • Multiple object tracking using k-shortest paths optimization
    • Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using k-shortest paths optimization. TPAMI (2011)
    • (2011) TPAMI
    • Berclaz, J.1    Fleuret, F.2    Turetken, E.3    Fua, P.4
  • 16
    • 80052904076 scopus 로고    scopus 로고
    • Globally-optimal greedy algorithms for tracking a variable number of objects
    • Pirsiavash, H., Ramanan, D., Fowlkes, C.C.: Globally-optimal greedy algorithms for tracking a variable number of objects. In: CVPR. (2011)
    • (2011) CVPR
    • Pirsiavash, H.1    Ramanan, D.2    Fowlkes, C.C.3
  • 18
  • 20
    • 80052904076 scopus 로고    scopus 로고
    • Globally-optimal greedy algorithms for tracking a variable number of objects
    • Pirsiavash, H., Ramanan, D., Fowlkes, C.C.: Globally-optimal greedy algorithms for tracking a variable number of objects. In: CVPR. (2011)
    • (2011) CVPR
    • Pirsiavash, H.1    Ramanan, D.2    Fowlkes, C.C.3
  • 21
    • 84959250182 scopus 로고    scopus 로고
    • Model recommendation: Generating object detectors from few samples
    • Wang, Y.X., Hebert, M.: Model recommendation: Generating object detectors from few samples. In: CVPR. (2015)
    • (2015) CVPR
    • Wang, Y.X.1    Hebert, M.2
  • 22
    • 85007242857 scopus 로고    scopus 로고
    • Learning by transferring from unsupervised universal sources
    • Wang, Y.X., Hebert, M.: Learning by transferring from unsupervised universal sources. In: AAAI. (2016)
    • (2016) AAAI
    • Wang, Y.X.1    Hebert, M.2
  • 23
    • 84887356933 scopus 로고    scopus 로고
    • Attribute discovery via predictable discriminative binary codes
    • Rastegari, M., Farhadi, A., Forsyth, D.: Attribute discovery via predictable discriminative binary codes. In: ECCV. (2012)
    • (2012) ECCV
    • Rastegari, M.1    Farhadi, A.2    Forsyth, D.3
  • 24
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS. (2012)
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 25
    • 84863411575 scopus 로고    scopus 로고
    • Ensemble of exemplar-svms for object detection and beyond
    • Malisiewicz, T., Gupta, A., Efros, A.A.: Ensemble of exemplar-svms for object detection and beyond. In: ICCV. (2011)
    • (2011) ICCV
    • Malisiewicz, T.1    Gupta, A.2    Efros, A.A.3
  • 26
    • 84898771670 scopus 로고    scopus 로고
    • Ensemble projection for semi-supervised image classification
    • Dai, D., Gool, L.V.: Ensemble projection for semi-supervised image classification. In: ICCV. (2013)
    • (2013) ICCV
    • Dai, D.1    Gool, L.V.2
  • 27
    • 85020193757 scopus 로고    scopus 로고
    • Ensemble projection with cnn features for semi-supervised image classification and image clustering
    • May
    • Dai, D., Van Gool, L.: Ensemble projection with cnn features for semi-supervised image classification and image clustering. Technical report, ETH Zurich (May 2015)
    • (2015) Technical Report ETH Zurich
    • Dai, D.1    Van Gool, L.2
  • 28
    • 84887366030 scopus 로고    scopus 로고
    • Adding unlabeled samples to categories by learned attributes
    • Choi, J., Rastegari, M., Farhadi, A., Davis, L.S.: Adding unlabeled samples to categories by learned attributes. In: CVPR. (2013)
    • (2013) CVPR
    • Choi, J.1    Rastegari, M.2    Farhadi, A.3    Davis, L.S.4
  • 30
    • 84866666480 scopus 로고    scopus 로고
    • Model recommendation for action recognition
    • Matikainen, P., Sukthankar, R., Hebert, M.: Model recommendation for action recognition. In: CVPR. (2012)
    • (2012) CVPR
    • Matikainen, P.1    Sukthankar, R.2    Hebert, M.3
  • 31
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. IEEE Computer 42(8) (2009)
    • (2009) IEEE Computer , vol.42 , Issue.8
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 32
    • 77955644905 scopus 로고    scopus 로고
    • Factor in the neighbors: Scalable and accurate collaborative filtering
    • Koren, Y.: Factor in the neighbors: Scalable and accurate collaborative filtering. TKDD 4(1) (2010) 1{24
    • (2010) TKDD , vol.4 , Issue.1 , pp. 1-24
    • Koren, Y.1
  • 33
    • 84897584251 scopus 로고    scopus 로고
    • Nonnegative matrix factorization: A comprehensive review
    • Wang, Y.X., Zhang, Y.J.: Nonnegative matrix factorization: A comprehensive review. TKDE 25(6) (2013)
    • (2013) TKDE , vol.25 , Issue.6
    • Wang, Y.X.1    Zhang, Y.J.2
  • 34
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • Pan, S.J., Yang, Q.: A survey on transfer learning. TKDE 22(10) (2010)
    • (2010) TKDE , vol.22 , Issue.10
    • Pan, S.J.1    Yang, Q.2
  • 35
    • 33749242989 scopus 로고    scopus 로고
    • Personalized handwriting recognition via biased regularization
    • Kienzle, W., Chellapilla, K.: Personalized handwriting recognition via biased regularization. In: ICML. (2006)
    • (2006) ICML
    • Kienzle, W.1    Chellapilla, K.2
  • 36
    • 49549114434 scopus 로고    scopus 로고
    • Adapting SVM classifiers to data with shifted distributions
    • Yang, J., Yan, R., Hauptmann, A.: Adapting SVM classifiers to data with shifted distributions. In: ICDM Workshops. (2007)
    • (2007) ICDM Workshops
    • Yang, J.1    Yan, R.2    Hauptmann, A.3
  • 37
    • 57549111074 scopus 로고    scopus 로고
    • Cross-domain video concept detection using adaptive SVMs
    • Yang, J., Yan, R., Hauptmann, A.: Cross-domain video concept detection using adaptive SVMs. In: ACM MM. (2007)
    • (2007) ACM MM
    • Yang, J.1    Yan, R.2    Hauptmann, A.3
  • 38
    • 70450240917 scopus 로고    scopus 로고
    • A framework for classifier adaptation and its applications in concept detection
    • Yang, J., Hauptmann, A.G.: A framework for classifier adaptation and its applications in concept detection. In: MIR. (2008)
    • (2008) MIR
    • Yang, J.1    Hauptmann, A.G.2
  • 39
    • 79953064532 scopus 로고    scopus 로고
    • Domain adaptation from multiple sources via auxiliary classifiers
    • Duan, L., Tsang, I.W., Xu, D., Chua, T.S.: Domain adaptation from multiple sources via auxiliary classifiers. In: ICML. (2009)
    • (2009) ICML
    • Duan, L.1    Tsang, I.W.2    Xu, D.3    Chua, T.S.4
  • 40
    • 80052662849 scopus 로고    scopus 로고
    • Multisource domain adaptation and its application to early detection of fatigue
    • Chattopadhyay, R., Ye, J., Panchanathan, S., Fan, W., Davidson, I.: Multisource domain adaptation and its application to early detection of fatigue. In: SIGKDD. (2011)
    • (2011) SIGKDD
    • Chattopadhyay, R.1    Ye, J.2    Panchanathan, S.3    Fan, W.4    Davidson, I.5
  • 41
    • 84856675275 scopus 로고    scopus 로고
    • Tabula rasa: Model transfer for object category detection
    • Aytar, Y., Zisserman, A.: Tabula rasa: Model transfer for object category detection. In: ICCV. (2011)
    • (2011) ICCV
    • Aytar, Y.1    Zisserman, A.2
  • 42
    • 84898484392 scopus 로고    scopus 로고
    • Enhancing exemplar svms using part level transfer regularization
    • Aytar, Y., Zisserman, A.: Enhancing exemplar svms using part level transfer regularization. In: BMVC. (2012)
    • (2012) BMVC
    • Aytar, Y.1    Zisserman, A.2
  • 43
    • 84897555831 scopus 로고    scopus 로고
    • Stability and hypothesis transfer learning
    • Kuzborskij, I., Orabona, F.: Stability and hypothesis transfer learning. In: ICML. (2013)
    • (2013) ICML
    • Kuzborskij, I.1    Orabona, F.2
  • 44
    • 84887384986 scopus 로고    scopus 로고
    • From N to N+1: Multiclass transfer incremental learning
    • Kuzborskij, I., Orabona, F., Caputo, B.: From N to N+1: Multiclass transfer incremental learning. In: CVPR. (2013)
    • (2013) CVPR
    • Kuzborskij, I.1    Orabona, F.2    Caputo, B.3
  • 45
    • 84900528296 scopus 로고    scopus 로고
    • Learning categories from few examples with multi model knowledge transfer
    • Tommasi, T., Orabona, F., Caputo, B.: Learning categories from few examples with multi model knowledge transfer. TPAMI 36(5) (2014)
    • (2014) TPAMI , vol.36 , Issue.5
    • Tommasi, T.1    Orabona, F.2    Caputo, B.3
  • 46
    • 85005964903 scopus 로고    scopus 로고
    • Transfer learning through greedy subset selection
    • Kuzborskij, I., Caputo, B., Orabona, F.: Transfer learning through greedy subset selection. In: ICIAP. (2015)
    • (2015) ICIAP
    • Kuzborskij, I.1    Caputo, B.2    Orabona, F.3
  • 48
    • 85147175076 scopus 로고    scopus 로고
    • Efficient sparse coding algorithms
    • Lee, H., Battle, A., Raina, R., Ng, A.: Efficient sparse coding algorithms. In: NIPS. (2006)
    • (2006) NIPS
    • Lee, H.1    Battle, A.2    Raina, R.3    Ng, A.4
  • 51
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR. (2014)
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 55
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained part-based models
    • Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. TPAMI 32(9) (2010)
    • (2010) TPAMI , vol.32 , Issue.9
    • Felzenszwalb, P.F.1    Girshick, R.B.2    McAllester, D.3    Ramanan, D.4
  • 56
    • 78149301639 scopus 로고    scopus 로고
    • Adapting visual category models to new domains
    • Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: ECCV. (2010)
    • (2010) ECCV
    • Saenko, K.1    Kulis, B.2    Fritz, M.3    Darrell, T.4
  • 58
    • 84866657270 scopus 로고    scopus 로고
    • Geodesic flow kernel for unsupervised domain adaptation
    • Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. In: CVPR. (2012)
    • (2012) CVPR
    • Gong, B.1    Shi, Y.2    Sha, F.3    Grauman, K.4
  • 59
    • 84898798531 scopus 로고    scopus 로고
    • Unsupervised visual domain adaptation using subspace alignment
    • Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T.: Unsupervised visual domain adaptation using subspace alignment. In: ICCV. (2013)
    • (2013) ICCV
    • Fernando, B.1    Habrard, A.2    Sebban, M.3    Tuytelaars, T.4
  • 60
    • 84860513476 scopus 로고    scopus 로고
    • Frustratingly easy domain adaptation
    • Daume III, H.: Frustratingly easy domain adaptation. In: ACL. (2007)
    • (2007) ACL
    • Daume, H.1
  • 61


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.