메뉴 건너뛰기




Volumn , Issue , 2013, Pages 3358-3365

From n to n+1: Multiclass transfer incremental learning

Author keywords

domain adaptation; leave one out; LSSVM; multiclass; transfer learning; visual object categorization

Indexed keywords

DOMAIN ADAPTATION; LEAVE-ONE-OUT; LSSVM; MULTICLASS; TRANSFER LEARNING; VISUAL OBJECTS;

EID: 84887384986     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2013.431     Document Type: Conference Paper
Times cited : (153)

References (20)
  • 1
    • 84856675275 scopus 로고    scopus 로고
    • Tabula rasa: Model transfer for object category detection
    • Y. Aytar and A. Zisserman. Tabula rasa: Model transfer for object category detection. In Proc. ICCV, 2011.
    • (2011) Proc. ICCV
    • Aytar, Y.1    Zisserman, A.2
  • 2
    • 80053342456 scopus 로고    scopus 로고
    • Domain adaptation with structural correspondence learning
    • ACL
    • J. Blitzer, R. McDonald, and F. Pereira. Domain adaptation with structural correspondence learning. In Proc. EMNLP, pages 120-128. ACL, 2006.
    • (2006) Proc. EMNLP , pp. 120-128
    • Blitzer, J.1    McDonald, R.2    Pereira, F.3
  • 4
    • 40649116219 scopus 로고    scopus 로고
    • Leave-one-out cross-validation based model selection criteria for weighted LS-SVMs
    • G. Cawley. Leave-one-out cross-validation based model selection criteria for weighted LS-SVMs. In Proc. IJCNN, 2006.
    • (2006) Proc. IJCNN
    • Cawley, G.1
  • 5
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector machines. JMLR, 2:265-292, 2002.
    • (2002) JMLR , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 6
    • 84860513476 scopus 로고    scopus 로고
    • Frustratingly easy domain adaptation
    • H. Daumé. Frustratingly easy domain adaptation. In Anual meeting, ACL, 2007.
    • (2007) Anual Meeting, ACL
    • Daumé, H.1
  • 7
    • 84865579385 scopus 로고    scopus 로고
    • Visual event recognition in videos by learning from web data
    • L. Duan, D. Xu, I. Tsang, and J. Luo. Visual event recognition in videos by learning from web data. IEEE TPAMI, 34(9):1667-1680, 2012.
    • (2012) IEEE TPAMI , vol.34 , Issue.9 , pp. 1667-1680
    • Duan, L.1    Xu, D.2    Tsang, I.3    Luo, J.4
  • 8
    • 85067032737 scopus 로고    scopus 로고
    • On feature combination for multiclass object classification
    • P. Gehler and S. Nowozin. On feature combination for multiclass object classification. In Proc. ICCV, 2009.
    • (2009) Proc. ICCV
    • Gehler, P.1    Nowozin, S.2
  • 10
    • 33646392997 scopus 로고    scopus 로고
    • QP algorithms with guaranteed accuracy and run time for support vector machines
    • D. Hush, P. Kelly, C. Scovel, and I. Steinwart. QP algorithms with guaranteed accuracy and run time for support vector machines. JMLR, 7:733-769, 2006.
    • (2006) JMLR , vol.7 , pp. 733-769
    • Hush, D.1    Kelly, P.2    Scovel, C.3    Steinwart, I.4
  • 11
    • 84856679717 scopus 로고    scopus 로고
    • Multiclass transfer learning from unconstrained priors
    • IEEE
    • L. Jie, T. Tommasi, and B. Caputo. Multiclass transfer learning from unconstrained priors. In Proc. ICCV, pages 1863-1870. IEEE, 2011.
    • (2011) Proc. ICCV , pp. 1863-1870
    • Jie, L.1    Tommasi, T.2    Caputo, B.3
  • 12
    • 84897555831 scopus 로고    scopus 로고
    • Stability and hypothesis transfer learning
    • I. Kuzborskij and F. Orabona. Stability and hypothesis transfer learning. In Proc. ICML, 2013.
    • (2013) Proc. ICML
    • Kuzborskij, I.1    Orabona, F.2
  • 13
    • 70450172710 scopus 로고    scopus 로고
    • Learning to detect unseen object classes by between-class attribute transfer
    • C. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by between-class attribute transfer. In Proc. CVPR, pages 951-958. IEEE, 2009.
    • (2009) Proc. CVPR IEEE , pp. 951-958
    • Lampert, C.1    Nickisch, H.2    Harmeling, S.3
  • 14
    • 56049125072 scopus 로고    scopus 로고
    • Transfer of samples in batch reinforcement learning
    • A. Lazaric, M. Restelli, and A. Bonarini. Transfer of samples in batch reinforcement learning. In Proc. ICML, 2008.
    • (2008) Proc. ICML
    • Lazaric, A.1    Restelli, M.2    Bonarini, A.3
  • 15
    • 70049090062 scopus 로고    scopus 로고
    • Domain adaptation with multiple sources
    • Y. Mansour, M. Mohri, and A. Rostamizadeh. Domain adaptation with multiple sources. Proc. NIPS, 21:1041-1048, 2009.
    • (2009) Proc. NIPS , vol.21 , pp. 1041-1048
    • Mansour, Y.1    Mohri, M.2    Rostamizadeh, A.3
  • 16
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • J. Suykens and J. Vandewalle. Least squares support vector machine classifiers. Neural Process. Lett., 9(3), 1999.
    • (1999) Neural Process. Lett. , vol.9 , Issue.3
    • Suykens, J.1    Vandewalle, J.2
  • 17
    • 85031124575 scopus 로고
    • Is learning the n-th thing any easier than learning the first
    • S. Thrun. Is learning the n-th thing any easier than learning the first? In Proc. NIPS, pages 640-646, 1995.
    • (1995) Proc. NIPS , pp. 640-646
    • Thrun, S.1
  • 18
    • 77956005674 scopus 로고    scopus 로고
    • Safety in numbers: Learning categories from few examples with multi model knowledge transfer
    • T. Tommasi, F. Orabona, and B. Caputo. Safety in numbers: Learning categories from few examples with multi model knowledge transfer. In Proc. CVPR, pages 3081-3088. IEEE, 2010.
    • (2010) Proc. CVPR IEEE , pp. 3081-3088
    • Tommasi, T.1    Orabona, F.2    Caputo, B.3
  • 19
    • 37849026107 scopus 로고    scopus 로고
    • Cross-domain video concept detection using adaptive SVMs
    • ACM
    • J. Yang, R. Yan, and A. Hauptmann. Cross-domain video concept detection using adaptive SVMs. In Proc. ACM, pages 188-197. ACM, 2007.
    • (2007) Proc. ACM , pp. 188-197
    • Yang, J.1    Yan, R.2    Hauptmann, A.3
  • 20
    • 77955998024 scopus 로고    scopus 로고
    • Boosting for transfer learning with multiple sources
    • Y. Yao and G. Doretto. Boosting for transfer learning with multiple sources. In Proc. CVPR, 2010.
    • (2010) Proc. CVPR
    • Yao, Y.1    Doretto, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.