메뉴 건너뛰기




Volumn , Issue , 2013, Pages 2483-2490

Discriminative segment annotation in weakly labeled video

Author keywords

[No Author keywords available]

Indexed keywords

INTERNET CONTENT; INTERNET VIDEO; SEGMENTATION RESULTS; SUPERVISED ALGORITHM; TRADITIONAL APPROACHES; TRAINING DATA; VISION COMMUNITIES; VISUAL CONCEPT;

EID: 84887363653     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2013.321     Document Type: Conference Paper
Times cited : (145)

References (33)
  • 1
    • 80052894134 scopus 로고    scopus 로고
    • FlowBoost-Appearance learning from sparsely annotated video
    • 3
    • K. Ali, D. Hasler, and F. Fleuret. FlowBoost-Appearance learning from sparsely annotated video. In CVPR, 2011. 3
    • (2011) CVPR
    • Ali, K.1    Hasler, D.2    Fleuret, F.3
  • 2
    • 84856661125 scopus 로고    scopus 로고
    • Learning spatiotemporal graphs of human activities
    • 2
    • W. Brendel and S. Todorovic. Learning spatiotemporal graphs of human activities. In ICCV, 2011. 2
    • (2011) ICCV
    • Brendel, W.1    Todorovic, S.2
  • 3
    • 80052912117 scopus 로고    scopus 로고
    • Object segmentation by long term analysis of point trajectories
    • 1, 2
    • T. Brox and J. Malik. Object segmentation by long term analysis of point trajectories. In ECCV, 2010. 1, 2
    • (2010) ECCV
    • Brox, T.1    Malik, J.2
  • 4
    • 70450173435 scopus 로고    scopus 로고
    • Histograms of oriented optical flow and Binet-Cauchy kernels on nonlinear dynamical systems for the recognition of human actions
    • 5
    • R. Chaudhry et al. Histograms of oriented optical flow and Binet-Cauchy kernels on nonlinear dynamical systems for the recognition of human actions. In CVPR, 2009. 5
    • (2009) CVPR
    • Chaudhry, R.1
  • 5
    • 33947180489 scopus 로고    scopus 로고
    • MILES: Multiple-instance learning via embedded instance selection
    • 2
    • Y. Chen, J. Bi, and J. Wang. MILES: Multiple-instance learning via embedded instance selection. PAMI, 28(12), 2006. 2
    • (2006) PAMI , vol.28 , Issue.12
    • Chen, Y.1    Bi, J.2    Wang, J.3
  • 6
    • 79959728283 scopus 로고    scopus 로고
    • Localizing objects while learning their appearance
    • 3
    • T. Deselaers, B. Alexe, and V. Ferrari. Localizing objects while learning their appearance. In ECCV, 2010. 3
    • (2010) ECCV
    • Deselaers, T.1    Alexe, B.2    Ferrari, V.3
  • 7
    • 71149103193 scopus 로고    scopus 로고
    • Boosting with structural sparsity
    • 5
    • J. C. Duchi and Y. Singer. Boosting with structural sparsity. In ICML, 2009. 5
    • (2009) ICML
    • Duchi, J.C.1    Singer, Y.2
  • 8
    • 77951298115 scopus 로고    scopus 로고
    • The Pascal visual object classes (VOC) challenge
    • 5
    • M. Everingham et al. The Pascal visual object classes (VOC) challenge. IJCV, 2010. 5
    • (2010) IJCV
    • Everingham, M.1
  • 9
    • 50949133669 scopus 로고    scopus 로고
    • LIBLINEAR: A library for large linear classification
    • 6
    • R.-E. Fan et al. LIBLINEAR: A library for large linear classification. JMLR, 9, 2008. 6
    • (2008) JMLR , vol.9
    • Fan, R.-E.1
  • 10
    • 77955986879 scopus 로고    scopus 로고
    • Efficient hierarchical graph-based video segmentation
    • 1, 2, 3
    • M. Grundmann, V. Kwatra, M. Han, and I. A. Essa. Efficient hierarchical graph-based video segmentation. In CVPR, 2010. 1, 2, 3
    • (2010) CVPR
    • Grundmann, M.1    Kwatra, V.2    Han, M.3    Essa, I.A.4
  • 12
    • 50649103739 scopus 로고    scopus 로고
    • Event detection in crowded videos
    • 2
    • Y. Ke, R. Sukthankar, and M. Hebert. Event detection in crowded videos. In ICCV, 2007. 2
    • (2007) ICCV
    • Ke, Y.1    Sukthankar, R.2    Hebert, M.3
  • 13
    • 84863045576 scopus 로고    scopus 로고
    • Key-segments for video object segmentation
    • 2
    • Y. Lee, J. Kim, and K. Grauman. Key-segments for video object segmentation. In ICCV, 2011. 2
    • (2011) ICCV
    • Lee, Y.1    Kim, J.2    Grauman, K.3
  • 14
    • 80052886155 scopus 로고    scopus 로고
    • Improving classifiers with unlabeled weakly-related videos
    • 3
    • C. Leistner et al. Improving classifiers with unlabeled weakly-related videos. In CVPR, 2011. 3
    • (2011) CVPR
    • Leistner, C.1
  • 15
    • 84856655399 scopus 로고    scopus 로고
    • Track to the future: Spatio-temporal video segmentation with long-range motion cues
    • 1, 2
    • J. Lezama, K. Alahari, J. Sivic, and I. Laptev. Track to the future: Spatio-temporal video segmentation with long-range motion cues. In CVPR, 2011. 1, 2
    • (2011) CVPR
    • Lezama, J.1    Alahari, K.2    Sivic, J.3    Laptev, I.4
  • 16
    • 80052874353 scopus 로고    scopus 로고
    • Modeling temporal structure of decomposable motion segments for activity classification
    • 1
    • J. C. Niebles, C.-W. Chen, and L. Fei-Fei. Modeling temporal structure of decomposable motion segments for activity classification. In ECCV, 2010. 1
    • (2010) ECCV
    • Niebles, J.C.1    Chen, C.-W.2    Fei-Fei, L.3
  • 18
    • 85042800267 scopus 로고
    • Performance evaluation of texture measures with classification based on Kullback discrimination of distributions
    • 5
    • T. Ojala, M. Pietikainen, and D. Harwood. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In ICPR, 1994. 5
    • (1994) ICPR
    • Ojala, T.1    Pietikainen, M.2    Harwood, D.3
  • 19
    • 61449255233 scopus 로고    scopus 로고
    • Seeing the objects behind the dots: Recognition in videos from a moving camera
    • 3
    • B. Ommer, T. Mader, and J. Buhmann. Seeing the objects behind the dots: Recognition in videos from a moving camera. IJCV, 83(1), 2009. 3
    • (2009) IJCV , vol.83 , Issue.1
    • Ommer, B.1    Mader, T.2    Buhmann, J.3
  • 20
    • 84866674032 scopus 로고    scopus 로고
    • Learning object class detectors from weakly annotated video
    • 1, 2, 5, 6, 8
    • A. Prest, C. Leistner, J. Civera, C. Schmid, and V. Ferrari. Learning object class detectors from weakly annotated video. In CVPR, 2012. 1, 2, 5, 6, 8
    • (2012) CVPR
    • Prest, A.1    Leistner, C.2    Civera, J.3    Schmid, C.4    Ferrari, V.5
  • 21
    • 33748128037 scopus 로고    scopus 로고
    • Building models of animals from video
    • 3
    • D. Ramanan, D. Forsyth, and K. Barnard. Building models of animals from video. PAMI, 28(8), 2006. 3
    • (2006) PAMI , vol.28 , Issue.8
    • Ramanan, D.1    Forsyth, D.2    Barnard, K.3
  • 22
    • 12844262766 scopus 로고    scopus 로고
    • GrabCut: Interactive foreground extraction using iterated graph cuts
    • 7
    • C. Rother et al. GrabCut: interactive foreground extraction using iterated graph cuts. Trans. Graphics, 23(3), 2004. 7
    • (2004) Intrans. Graphics , vol.23 , Issue.3
    • Rother, C.1
  • 23
    • 84888335371 scopus 로고    scopus 로고
    • In defence of negative mining for annotating weakly labelled data
    • 2, 3, 4, 5, 7
    • P. Siva, C. Russell, and T. Xiang. In defence of negative mining for annotating weakly labelled data. In ECCV, 2012. 2, 3, 4, 5, 7
    • (2012) ECCV
    • Siva, P.1    Russell, C.2    Xiang, T.3
  • 24
    • 84877780666 scopus 로고    scopus 로고
    • Shifting weights: Adapting object detectors from image to video
    • 5
    • K. Tang et al. Shifting weights: Adapting object detectors from image to video. In NIPS, 2012. 5
    • (2012) NIPS
    • Tang, K.1
  • 25
    • 84866658784 scopus 로고    scopus 로고
    • Learning latent temporal structure for complex event detection
    • 1
    • K. Tang, L. Fei-Fei, and D. Koller. Learning latent temporal structure for complex event detection. In CVPR, 2012. 1
    • (2012) CVPR
    • Tang, K.1    Fei-Fei, L.2    Koller, D.3
  • 26
    • 84866684103 scopus 로고    scopus 로고
    • Weakly supervised structured output learning for semantic segmentation
    • 3
    • A. Vezhnevets, V. Ferrari, and J. M. Buhmann. Weakly supervised structured output learning for semantic segmentation. In CVPR, 2012. 3
    • (2012) CVPR
    • Vezhnevets, A.1    Ferrari, V.2    Buhmann, J.M.3
  • 27
    • 79958711802 scopus 로고    scopus 로고
    • Cosegmentation revisited: Models and optimization
    • 3
    • S. Vicente, V. Kolmogorov, and C. Rother. Cosegmentation revisited: Models and optimization. In ECCV, 2010. 3
    • (2010) ECCV
    • Vicente, S.1    Kolmogorov, V.2    Rother, C.3
  • 28
    • 84864049528 scopus 로고    scopus 로고
    • Multiple instance boosting for object detection
    • 2, 5
    • P. Viola, J. Platt, and C. Zhang. Multiple instance boosting for object detection. In NIPS, 2005. 2, 5
    • (2005) NIPS
    • Viola, P.1    Platt, J.2    Zhang, C.3
  • 29
    • 85020603202 scopus 로고    scopus 로고
    • An HOG-LBP human detector with partial occlusion handling
    • 5
    • X. Wang, T. X. Han, and S. Yan. An HOG-LBP human detector with partial occlusion handling. In ICCV, 2009. 5
    • (2009) ICCV
    • Wang, X.1    Han, T.X.2    Yan, S.3
  • 30
    • 27644567619 scopus 로고    scopus 로고
    • Motion layer extraction in the presence of occlusion using graph cuts
    • 2
    • J. Xiao and M. Shah. Motion layer extraction in the presence of occlusion using graph cuts. PAMI, 27(10), 2005. 2
    • (2005) PAMI , vol.27 , Issue.10
    • Xiao, J.1    Shah, M.2
  • 31
    • 84881103424 scopus 로고    scopus 로고
    • Streaming hierarchical video segmentation
    • 2
    • C. Xu, C. Xiong, and J. Corso. Streaming hierarchical video segmentation. In ECCV, 2012. 2
    • (2012) ECCV
    • Xu, C.1    Xiong, C.2    Corso, J.3
  • 32
    • 51949083216 scopus 로고    scopus 로고
    • Joint multi-label multi-instance learning for image classification
    • 2
    • Z.-J. Zha et al. Joint multi-label multi-instance learning for image classification. In CVPR, 2008. 2
    • (2008) CVPR
    • Zha, Z.-J.1
  • 33
    • 84864028262 scopus 로고    scopus 로고
    • Multi-instance multi-label learning with application to scene classification
    • 2
    • Z.-H. Zhou and M.-L. Zhang. Multi-instance multi-label learning with application to scene classification. In NIPS, 2007. 2
    • (2007) NIPS
    • Zhou, Z.-H.1    Zhang, M.-L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.