메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 3548-3556

Track and Transfer: Watching Videos to Simulate Strong Human Supervision for Weakly-Supervised Object Detection

Author keywords

[No Author keywords available]

Indexed keywords

CHEMICAL DETECTION; COMPUTER VISION; FEATURE EXTRACTION; HOUGH TRANSFORMS; IMAGE MATCHING; OBJECT RECOGNITION; PATTERN RECOGNITION;

EID: 84986332712     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.386     Document Type: Conference Paper
Times cited : (78)

References (40)
  • 1
    • 84919725433 scopus 로고    scopus 로고
    • Weakly supervised object detection with posterior regularization
    • H. Bilen, M. Pedersoli, and T. Tuytelaars. Weakly supervised object detection with posterior regularization. In BMVC, 2014.
    • (2014) BMVC
    • Bilen, H.1    Pedersoli, M.2    Tuytelaars, T.3
  • 2
    • 84887369458 scopus 로고    scopus 로고
    • Watching unlabeled video helps learn new human actions from very few labeled snapshots
    • C. Chen and K. Grauman. Watching Unlabeled Video Helps Learn New Human Actions from Very Few Labeled Snapshots. In CVPR, 2013.
    • (2013) CVPR
    • Chen, C.1    Grauman, K.2
  • 3
    • 84911376072 scopus 로고    scopus 로고
    • Multi-fold mil training for weakly supervised object localization
    • R. Cinbis, J. Verbeek, and C. Schmid. Multi-fold MIL Training for Weakly Supervised Object Localization. In CVPR, 2014.
    • (2014) CVPR
    • Cinbis, R.1    Verbeek, J.2    Schmid, C.3
  • 5
    • 0036565814 scopus 로고    scopus 로고
    • Mean shift: A robust approach toward feature space analysis
    • D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis. PAMI, 24(5):603-619, 2002.
    • (2002) PAMI , vol.24 , Issue.5 , pp. 603-619
    • Comaniciu, D.1    Meer, P.2
  • 6
    • 0034857778 scopus 로고    scopus 로고
    • The variable bandwidth mean shift and data-driven scale selection
    • D. Comaniciu, V. Ramesh, and P. Meer. The variable bandwidth mean shift and data-driven scale selection. In ICCV, 2001.
    • (2001) ICCV
    • Comaniciu, D.1    Ramesh, V.2    Meer, P.3
  • 7
    • 79959728283 scopus 로고    scopus 로고
    • Localizing objects while learning their appearance
    • T. Deselaers, B. Alexe, and V. Ferrari. Localizing objects while learning their appearance. In ECCV, 2010.
    • (2010) ECCV
    • Deselaers, T.1    Alexe, B.2    Ferrari, V.3
  • 9
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained part based models
    • P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object Detection with Discriminatively Trained Part Based Models. PAMI, 32(9):1627-1645, 2010.
    • (2010) PAMI , vol.32 , Issue.9 , pp. 1627-1645
    • Felzenszwalb, P.1    Girshick, R.2    McAllester, D.3    Ramanan, D.4
  • 10
    • 0041940256 scopus 로고    scopus 로고
    • Object class recognition by unsupervised scale-invariant learning
    • R. Fergus, P. Perona, and A. Zisserman. Object Class Recognition by Unsupervised Scale-Invariant Learning. In CVPR, 2003.
    • (2003) CVPR
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 11
    • 85029359197 scopus 로고    scopus 로고
    • Fast r-cnn
    • R. Girshick. Fast r-cnn. In ICCV, 2015.
    • (2015) ICCV
    • Girshick, R.1
  • 12
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 13
    • 84959195179 scopus 로고    scopus 로고
    • Deformable part models are convolutional neural networks
    • R. Girshick, F. Iandola, T. Darrell, and J. Malik. Deformable part models are convolutional neural networks. In CVPR, 2015.
    • (2015) CVPR
    • Girshick, R.1    Iandola, F.2    Darrell, T.3    Malik, J.4
  • 15
    • 85009918748 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014.
    • (2014) ECCV
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 17
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet Classification with Deep Convolutional Neural Networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 19
    • 39749124915 scopus 로고    scopus 로고
    • Robust object detection with interleaved categorization and segmentation
    • B. Leibe, A. Leonardis, and B. Schiele. Robust object detection with interleaved categorization and segmentation. IJCV, 77(1-3):259-289, 2008.
    • (2008) IJCV , vol.77 , Issue.1-3 , pp. 259-289
    • Leibe, B.1    Leonardis, A.2    Schiele, B.3
  • 22
    • 84863411575 scopus 로고    scopus 로고
    • Ensemble of exemplar-svms for object detection and beyond
    • T. Malisiewicz, A. Gupta, and A. A. Efros. Ensemble of exemplar-svms for object detection and beyond. In ICCV, 2011.
    • (2011) ICCV
    • Malisiewicz, T.1    Gupta, A.2    Efros, A.A.3
  • 23
    • 84959201998 scopus 로고    scopus 로고
    • Watch and learn: Semi-supervised learning of object detectors from videos
    • I. Misra, A. Shrivastava, and M. Hebert. Watch and learn: Semi-supervised learning of object detectors from videos. In CVPR, 2015.
    • (2015) CVPR
    • Misra, I.1    Shrivastava, A.2    Hebert, M.3
  • 24
    • 84901822916 scopus 로고    scopus 로고
    • Segmentation of moving objects by long term video analysis
    • P. Ochs, J. Malik, and T. Brox. Segmentation of moving objects by long term video analysis. PAMI, 36(6):1187-1200, 2014.
    • (2014) PAMI , vol.36 , Issue.6 , pp. 1187-1200
    • Ochs, P.1    Malik, J.2    Brox, T.3
  • 25
    • 84953933150 scopus 로고    scopus 로고
    • Is object localization for free? Weakly-supervised learning with convolutional neural networks
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Is object localization for free? Weakly-supervised learning with convolutional neural networks. In CVPR, 2015.
    • (2015) CVPR
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 26
    • 84856650974 scopus 로고    scopus 로고
    • Scene recognition and weakly supervised object localization with deformable part-based models
    • M. Pandey and S. Lazebnik. Scene Recognition and Weakly Supervised Object Localization with Deformable Part-Based Models. In ICCV, 2011.
    • (2011) ICCV
    • Pandey, M.1    Lazebnik, S.2
  • 29
    • 33748128037 scopus 로고    scopus 로고
    • Building models of animals from video
    • D. Ramanan, D. Forsyth, and K. Barnard. Building Models of Animals from Video. PAMI, 28(8):1319-1334, 2006.
    • (2006) PAMI , vol.28 , Issue.8 , pp. 1319-1334
    • Ramanan, D.1    Forsyth, D.2    Barnard, K.3
  • 30
    • 85083951635 scopus 로고    scopus 로고
    • Overfeat: Integrated recognition, localization and detection using convolutional networks
    • P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. In ICLR, 2014.
    • (2014) ICLR
    • Sermanet, P.1    Eigen, D.2    Zhang, X.3    Mathieu, M.4    Fergus, R.5    LeCun, Y.6
  • 31
    • 84884958786 scopus 로고    scopus 로고
    • Unsupervised discovery of mid-level discriminative patches
    • S. Singh, A. Gupta, and A. Efros. Unsupervised Discovery of Mid-level Discriminative Patches. In ECCV, 2012.
    • (2012) ECCV
    • Singh, S.1    Gupta, A.2    Efros, A.3
  • 32
    • 84888335371 scopus 로고    scopus 로고
    • In defence of negative mining for annotating weakly labelled data
    • P. Siva, C. Russell, and T. Xiang. In Defence of Negative Mining for Annotating Weakly Labelled Data. In ECCV, 2012.
    • (2012) ECCV
    • Siva, P.1    Russell, C.2    Xiang, T.3
  • 34
    • 84937853706 scopus 로고    scopus 로고
    • Weaklysupervised discovery of visual pattern configurations
    • H. O. Song, Y. J. Lee, S. Jegelka, and T. Darrell. Weaklysupervised Discovery of Visual Pattern Configurations. In NIPS, 2014.
    • (2014) NIPS
    • Song, H.O.1    Lee, Y.J.2    Jegelka, S.3    Darrell, T.4
  • 35
    • 80052908300 scopus 로고    scopus 로고
    • Unbiased look at dataset bias
    • A. Torralba and A. A. Efros. Unbiased Look at Dataset Bias. In CVPR, 2011.
    • (2011) CVPR
    • Torralba, A.1    Efros, A.A.2
  • 36
    • 84881160857 scopus 로고    scopus 로고
    • Selective search for object recognition
    • J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. Selective Search for Object Recognition. IJCV, 104(2):154-171, 2013.
    • (2013) IJCV , vol.104 , Issue.2 , pp. 154-171
    • Uijlings, J.1    De S.K.Van2    Gevers, T.3    Smeulders, A.4
  • 37
    • 84956604127 scopus 로고    scopus 로고
    • Weakly supervised object localization with latent category learning
    • C. Wang, W. Ren, K. Huang, and T. Tan. Weakly supervised object localization with latent category learning. In ECCV, 2014.
    • (2014) ECCV
    • Wang, C.1    Ren, W.2    Huang, K.3    Tan, T.4
  • 38
    • 84973889989 scopus 로고    scopus 로고
    • Unsupervised learning of visual representations using videos
    • X.Wang and A. Gupta. Unsupervised learning of visual representations using videos. In ICCV, 2015.
    • (2015) ICCV
    • Wang, X.1    Gupta, A.2
  • 39
    • 0002409979 scopus 로고    scopus 로고
    • Unsupervised learning of models for recognition
    • M. Weber, M. Welling, and P. Perona. Unsupervised Learning of Models for Recognition. In ECCV, 2000.
    • (2000) ECCV
    • Weber, M.1    Welling, M.2    Perona, P.3
  • 40
    • 84986267620 scopus 로고    scopus 로고
    • Track and segment: An iterative unsupervised approach for video object proposals
    • F. Xiao and Y. J. Lee. Track and segment: An iterative unsupervised approach for video object proposals. In CVPR, 2016.
    • (2016) CVPR
    • Xiao, F.1    Lee, Y.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.