-
1
-
-
84919725433
-
Weakly supervised object detection with posterior regularization
-
H. Bilen, M. Pedersoli, and T. Tuytelaars. Weakly supervised object detection with posterior regularization. In BMVC, 2014.
-
(2014)
BMVC
-
-
Bilen, H.1
Pedersoli, M.2
Tuytelaars, T.3
-
2
-
-
84887369458
-
Watching unlabeled video helps learn new human actions from very few labeled snapshots
-
C. Chen and K. Grauman. Watching Unlabeled Video Helps Learn New Human Actions from Very Few Labeled Snapshots. In CVPR, 2013.
-
(2013)
CVPR
-
-
Chen, C.1
Grauman, K.2
-
3
-
-
84911376072
-
Multi-fold mil training for weakly supervised object localization
-
R. Cinbis, J. Verbeek, and C. Schmid. Multi-fold MIL Training for Weakly Supervised Object Localization. In CVPR, 2014.
-
(2014)
CVPR
-
-
Cinbis, R.1
Verbeek, J.2
Schmid, C.3
-
5
-
-
0036565814
-
Mean shift: A robust approach toward feature space analysis
-
D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis. PAMI, 24(5):603-619, 2002.
-
(2002)
PAMI
, vol.24
, Issue.5
, pp. 603-619
-
-
Comaniciu, D.1
Meer, P.2
-
6
-
-
0034857778
-
The variable bandwidth mean shift and data-driven scale selection
-
D. Comaniciu, V. Ramesh, and P. Meer. The variable bandwidth mean shift and data-driven scale selection. In ICCV, 2001.
-
(2001)
ICCV
-
-
Comaniciu, D.1
Ramesh, V.2
Meer, P.3
-
7
-
-
79959728283
-
Localizing objects while learning their appearance
-
T. Deselaers, B. Alexe, and V. Ferrari. Localizing objects while learning their appearance. In ECCV, 2010.
-
(2010)
ECCV
-
-
Deselaers, T.1
Alexe, B.2
Ferrari, V.3
-
8
-
-
84872258949
-
What makes Paris look like Paris?
-
C. Doersch, S. Singh, A. Gupta, J. Sivic, and A. A. Efros. What Makes Paris Look like Paris? SIGGRAPH, 31(4), 2012.
-
(2012)
SIGGRAPH
, vol.31
, Issue.4
-
-
Doersch, C.1
Singh, S.2
Gupta, A.3
Sivic, J.4
Efros, A.A.5
-
9
-
-
77955422240
-
Object detection with discriminatively trained part based models
-
P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object Detection with Discriminatively Trained Part Based Models. PAMI, 32(9):1627-1645, 2010.
-
(2010)
PAMI
, vol.32
, Issue.9
, pp. 1627-1645
-
-
Felzenszwalb, P.1
Girshick, R.2
McAllester, D.3
Ramanan, D.4
-
10
-
-
0041940256
-
Object class recognition by unsupervised scale-invariant learning
-
R. Fergus, P. Perona, and A. Zisserman. Object Class Recognition by Unsupervised Scale-Invariant Learning. In CVPR, 2003.
-
(2003)
CVPR
-
-
Fergus, R.1
Perona, P.2
Zisserman, A.3
-
11
-
-
85029359197
-
Fast r-cnn
-
R. Girshick. Fast r-cnn. In ICCV, 2015.
-
(2015)
ICCV
-
-
Girshick, R.1
-
12
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In CVPR, 2014.
-
(2014)
CVPR
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
13
-
-
84959195179
-
Deformable part models are convolutional neural networks
-
R. Girshick, F. Iandola, T. Darrell, and J. Malik. Deformable part models are convolutional neural networks. In CVPR, 2015.
-
(2015)
CVPR
-
-
Girshick, R.1
Iandola, F.2
Darrell, T.3
Malik, J.4
-
14
-
-
84904680235
-
Weakly supervised learning of object segmentations from web-scale video
-
G. Hartmann, M. Grundmann, J. Hoffman, D. Tsai, V. Kwatra, O. Madani, S. Vijayanarasimhan, I. Essa, J. Rehg, and R. Sukthankar. Weakly Supervised Learning of Object Segmentations from Web-Scale Video. In ECCV, 2012.
-
(2012)
ECCV
-
-
Hartmann, G.1
Grundmann, M.2
Hoffman, J.3
Tsai, D.4
Kwatra, V.5
Madani, O.6
Vijayanarasimhan, S.7
Essa, I.8
Rehg, J.9
Sukthankar, R.10
-
15
-
-
85009918748
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014.
-
(2014)
ECCV
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
16
-
-
85009867858
-
-
arXiv:1408.5093
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. B. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv:1408.5093, 2014.
-
(2014)
Caffe: Convolutional Architecture for Fast Feature Embedding
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.B.6
Guadarrama, S.7
Darrell, T.8
-
17
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet Classification with Deep Convolutional Neural Networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
18
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel. Backpropagation applied to handwritten zip code recognition. In Neural Computation, 1989.
-
(1989)
Neural Computation
-
-
LeCun, Y.1
Boser, B.2
Denker, J.3
Henderson, D.4
Howard, R.5
Hubbard, W.6
Jackel, L.7
-
19
-
-
39749124915
-
Robust object detection with interleaved categorization and segmentation
-
B. Leibe, A. Leonardis, and B. Schiele. Robust object detection with interleaved categorization and segmentation. IJCV, 77(1-3):259-289, 2008.
-
(2008)
IJCV
, vol.77
, Issue.1-3
, pp. 259-289
-
-
Leibe, B.1
Leonardis, A.2
Schiele, B.3
-
20
-
-
80052886155
-
Improving classifiers with unlabeled weakly-related videos
-
C. Leistner, M. Godec, S. Schulter, A. Sakari, M. Werlberger, and H. Bischof. Improving Classifiers with Unlabeled Weakly-Related Videos. In CVPR, 2011.
-
(2011)
CVPR
-
-
Leistner, C.1
Godec, M.2
Schulter, S.3
Sakari, A.4
Werlberger, M.5
Bischof, H.6
-
21
-
-
84959221618
-
-
arXiv:1411.2861
-
X. Liang, S. Liu, Y.Wei, L. Liu, L. Lin, and S. Yan. Computational baby learning. In arXiv:1411.2861, 2015.
-
(2015)
Computational Baby Learning
-
-
Liang, X.1
Liu, S.2
Wei, Y.3
Liu, L.4
Lin, L.5
Yan, S.6
-
22
-
-
84863411575
-
Ensemble of exemplar-svms for object detection and beyond
-
T. Malisiewicz, A. Gupta, and A. A. Efros. Ensemble of exemplar-svms for object detection and beyond. In ICCV, 2011.
-
(2011)
ICCV
-
-
Malisiewicz, T.1
Gupta, A.2
Efros, A.A.3
-
23
-
-
84959201998
-
Watch and learn: Semi-supervised learning of object detectors from videos
-
I. Misra, A. Shrivastava, and M. Hebert. Watch and learn: Semi-supervised learning of object detectors from videos. In CVPR, 2015.
-
(2015)
CVPR
-
-
Misra, I.1
Shrivastava, A.2
Hebert, M.3
-
24
-
-
84901822916
-
Segmentation of moving objects by long term video analysis
-
P. Ochs, J. Malik, and T. Brox. Segmentation of moving objects by long term video analysis. PAMI, 36(6):1187-1200, 2014.
-
(2014)
PAMI
, vol.36
, Issue.6
, pp. 1187-1200
-
-
Ochs, P.1
Malik, J.2
Brox, T.3
-
25
-
-
84953933150
-
Is object localization for free? Weakly-supervised learning with convolutional neural networks
-
M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Is object localization for free? Weakly-supervised learning with convolutional neural networks. In CVPR, 2015.
-
(2015)
CVPR
-
-
Oquab, M.1
Bottou, L.2
Laptev, I.3
Sivic, J.4
-
26
-
-
84856650974
-
Scene recognition and weakly supervised object localization with deformable part-based models
-
M. Pandey and S. Lazebnik. Scene Recognition and Weakly Supervised Object Localization with Deformable Part-Based Models. In ICCV, 2011.
-
(2011)
ICCV
-
-
Pandey, M.1
Lazebnik, S.2
-
28
-
-
84866674032
-
Learning object class detectors from weakly annotated video
-
A. Prest, C. Leistner, J. Civera, C. Schmid, and V. Ferrari. Learning Object Class Detectors from Weakly Annotated Video. In CVPR, 2012.
-
(2012)
CVPR
-
-
Prest, A.1
Leistner, C.2
Civera, J.3
Schmid, C.4
Ferrari, V.5
-
29
-
-
33748128037
-
Building models of animals from video
-
D. Ramanan, D. Forsyth, and K. Barnard. Building Models of Animals from Video. PAMI, 28(8):1319-1334, 2006.
-
(2006)
PAMI
, vol.28
, Issue.8
, pp. 1319-1334
-
-
Ramanan, D.1
Forsyth, D.2
Barnard, K.3
-
30
-
-
85083951635
-
Overfeat: Integrated recognition, localization and detection using convolutional networks
-
P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. In ICLR, 2014.
-
(2014)
ICLR
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
LeCun, Y.6
-
31
-
-
84884958786
-
Unsupervised discovery of mid-level discriminative patches
-
S. Singh, A. Gupta, and A. Efros. Unsupervised Discovery of Mid-level Discriminative Patches. In ECCV, 2012.
-
(2012)
ECCV
-
-
Singh, S.1
Gupta, A.2
Efros, A.3
-
32
-
-
84888335371
-
In defence of negative mining for annotating weakly labelled data
-
P. Siva, C. Russell, and T. Xiang. In Defence of Negative Mining for Annotating Weakly Labelled Data. In ECCV, 2012.
-
(2012)
ECCV
-
-
Siva, P.1
Russell, C.2
Xiang, T.3
-
33
-
-
84919792468
-
On learning to localize objects with minimal supervision
-
H. O. Song, R. Girshick, S. Jegelka, J. Mairal, Z. Harchaoui, and T. Darrell. On Learning to Localize Objects with Minimal Supervision. In ICML, 2014.
-
(2014)
ICML
-
-
Song, H.O.1
Girshick, R.2
Jegelka, S.3
Mairal, J.4
Harchaoui, Z.5
Darrell, T.6
-
34
-
-
84937853706
-
Weaklysupervised discovery of visual pattern configurations
-
H. O. Song, Y. J. Lee, S. Jegelka, and T. Darrell. Weaklysupervised Discovery of Visual Pattern Configurations. In NIPS, 2014.
-
(2014)
NIPS
-
-
Song, H.O.1
Lee, Y.J.2
Jegelka, S.3
Darrell, T.4
-
35
-
-
80052908300
-
Unbiased look at dataset bias
-
A. Torralba and A. A. Efros. Unbiased Look at Dataset Bias. In CVPR, 2011.
-
(2011)
CVPR
-
-
Torralba, A.1
Efros, A.A.2
-
36
-
-
84881160857
-
Selective search for object recognition
-
J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. Selective Search for Object Recognition. IJCV, 104(2):154-171, 2013.
-
(2013)
IJCV
, vol.104
, Issue.2
, pp. 154-171
-
-
Uijlings, J.1
De S.K.Van2
Gevers, T.3
Smeulders, A.4
-
37
-
-
84956604127
-
Weakly supervised object localization with latent category learning
-
C. Wang, W. Ren, K. Huang, and T. Tan. Weakly supervised object localization with latent category learning. In ECCV, 2014.
-
(2014)
ECCV
-
-
Wang, C.1
Ren, W.2
Huang, K.3
Tan, T.4
-
38
-
-
84973889989
-
Unsupervised learning of visual representations using videos
-
X.Wang and A. Gupta. Unsupervised learning of visual representations using videos. In ICCV, 2015.
-
(2015)
ICCV
-
-
Wang, X.1
Gupta, A.2
-
39
-
-
0002409979
-
Unsupervised learning of models for recognition
-
M. Weber, M. Welling, and P. Perona. Unsupervised Learning of Models for Recognition. In ECCV, 2000.
-
(2000)
ECCV
-
-
Weber, M.1
Welling, M.2
Perona, P.3
-
40
-
-
84986267620
-
Track and segment: An iterative unsupervised approach for video object proposals
-
F. Xiao and Y. J. Lee. Track and segment: An iterative unsupervised approach for video object proposals. In CVPR, 2016.
-
(2016)
CVPR
-
-
Xiao, F.1
Lee, Y.J.2
|