메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 933-942

Track and segment: An iterative unsupervised approach for video object proposals

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; IMAGE SEGMENTATION; MOTION COMPENSATION; PATTERN RECOGNITION;

EID: 84986267620     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.107     Document Type: Conference Paper
Times cited : (130)

References (60)
  • 1
    • 84866688216 scopus 로고    scopus 로고
    • Measuring the objectness of image windows
    • 1
    • B. Alexe, T. Deselaers, and V. Ferrari. Measuring the objectness of image windows. PAMI, 2012.
    • (2012) PAMI
    • Alexe, B.1    Deselaers, T.2    Ferrari, V.3
  • 3
    • 84897560855 scopus 로고    scopus 로고
    • Video object segmentation by salient segment chain composition
    • 2
    • D. Banica, A. Agape, A. Ion, and C. Sminchisescu. Video object segmentation by salient segment chain composition. In ICCV Workshops, 2013.
    • (2013) ICCV Workshops
    • Banica, D.1    Agape, A.2    Ion, A.3    Sminchisescu, C.4
  • 5
    • 0035509961 scopus 로고    scopus 로고
    • Efficient approximate energy minimization via graph cuts
    • 5
    • Y. Boykov, O. Veksler, and R. Zabih. Efficient approximate energy minimization via graph cuts. PAMI, 2001.
    • (2001) PAMI
    • Boykov, Y.1    Veksler, O.2    Zabih, R.3
  • 6
    • 77953223104 scopus 로고    scopus 로고
    • Video object segmentation by tracking regions
    • 1, 2
    • W. Brendel and S. Todorovic. Video object segmentation by tracking regions. In ICCV, 2009.
    • (2009) ICCV
    • Brendel, W.1    Todorovic, S.2
  • 7
    • 80052912117 scopus 로고    scopus 로고
    • Object segmentation by long term analysis of point trajectories
    • 1, 2, 7
    • T. Brox and J. Malik. Object segmentation by long term analysis of point trajectories. In ECCV, 2010.
    • (2010) ECCV
    • Brox, T.1    Malik, J.2
  • 8
    • 79551562584 scopus 로고    scopus 로고
    • Large displacement optical flow: Descriptor matching in variational motion estimation
    • 1, 2
    • T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI, 2011.
    • (2011) PAMI
    • Brox, T.1    Malik, J.2
  • 9
    • 77956008665 scopus 로고    scopus 로고
    • Constrained parametric min-cuts for automatic object segmentation
    • 6
    • J. Carreira and C. Sminchisescu. Constrained Parametric Min-Cuts for Automatic Object Segmentation. In CVPR, 2010.
    • (2010) CVPR
    • Carreira, J.1    Sminchisescu, C.2
  • 12
    • 80052910974 scopus 로고    scopus 로고
    • Context tracker: Exploring supporters and distracters in unconstrained environments
    • 6
    • T. B. Dinh, N. Vo, and G. Medioni. Context tracker: Exploring supporters and distracters in unconstrained environments. In CVPR, 2011.
    • (2011) CVPR
    • Dinh, T.B.1    Vo, N.2    Medioni, G.3
  • 13
    • 84898820142 scopus 로고    scopus 로고
    • Structured forests for fast edge detection
    • 3, 5
    • P. Dollár and C. L. Zitnick. Structured forests for fast edge detection. In ICCV, 2013.
    • (2013) ICCV
    • Dollár, P.1    Zitnick, C.L.2
  • 14
    • 79851509694 scopus 로고    scopus 로고
    • Category independent object proposals
    • 6
    • I. Endres and D. Hoiem. Category Independent Object Proposals. In ECCV, 2010.
    • (2010) ECCV
    • Endres, I.1    Hoiem, D.2
  • 17
    • 84956699399 scopus 로고    scopus 로고
    • Transfer learning based visual tracking with Gaussian processes regression
    • 2, 6
    • J. Gao, H. Ling, W. Hu, and J. Xing. Transfer learning based visual tracking with Gaussian processes regression. In ECCV, 2014.
    • (2014) ECCV
    • Gao, J.1    Ling, H.2    Hu, W.3    Xing, J.4
  • 18
    • 85029359197 scopus 로고    scopus 로고
    • Fast R-CNN
    • 1
    • R. Girshick. Fast R-CNN. In ICCV, 2015.
    • (2015) ICCV
    • Girshick, R.1
  • 19
    • 77955986879 scopus 로고    scopus 로고
    • Efficient hierarchical graph-based video segmentation
    • 1, 2, 6, 7
    • M. Grundmann, V. Kwatra, M. Han, and I. Essa. Efficient hierarchical graph-based video segmentation. In CVPR, 2010.
    • (2010) CVPR
    • Grundmann, M.1    Kwatra, V.2    Han, M.3    Essa, I.4
  • 20
    • 84856659290 scopus 로고    scopus 로고
    • Struck: Structured output tracking with kernels
    • 2, 6
    • S. Hare, A. Saffari, and P. H. Torr. Struck: Structured output tracking with kernels. In ICCV, 2011.
    • (2011) ICCV
    • Hare, S.1    Saffari, A.2    Torr, P.H.3
  • 21
    • 84959236250 scopus 로고    scopus 로고
    • Hypercolumns for object segmentation and fine-grained localization
    • 1, 5
    • B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hypercolumns for object segmentation and fine-grained localization. In CVPR, 2015.
    • (2015) CVPR
    • Hariharan, B.1    Arbeláez, P.2    Girshick, R.3    Malik, J.4
  • 22
    • 85009918748 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • 1
    • K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014.
    • (2014) ECCV
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 24
    • 70449606070 scopus 로고    scopus 로고
    • Robust object tracking by hierarchical association of detection responses
    • 2
    • C. Huang, B. Wu, and R. Nevatia. Robust object tracking by hierarchical association of detection responses. In ECCV, 2008.
    • (2008) ECCV
    • Huang, C.1    Wu, B.2    Nevatia, R.3
  • 25
    • 84866725281 scopus 로고    scopus 로고
    • Visual tracking via adaptive structural local sparse appearance model
    • 6
    • X. Jia, H. Lu, and M.-H. Yang. Visual tracking via adaptive structural local sparse appearance model. In CVPR, 2012.
    • (2012) CVPR
    • Jia, X.1    Lu, H.2    Yang, M.-H.3
  • 27
    • 84959200010 scopus 로고    scopus 로고
    • Learning to propose objects
    • 1, 2
    • P. Krähenbühl and V. Koltun. Learning to propose objects. In CVPR, 2015.
    • (2015) CVPR
    • Krähenbühl, P.1    Koltun, V.2
  • 28
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • 3, 5
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 29
    • 85161967298 scopus 로고    scopus 로고
    • Self-paced learning for latent variable models
    • 2
    • M. P. Kumar, B. Packer, and D. Koller. Self-paced learning for latent variable models. In NIPS, 2010.
    • (2010) NIPS
    • Kumar, M.P.1    Packer, B.2    Koller, D.3
  • 30
    • 77955995205 scopus 로고    scopus 로고
    • Visual tracking decomposition
    • 6
    • J. Kwon and K. M. Lee. Visual tracking decomposition. In CVPR, 2010.
    • (2010) CVPR
    • Kwon, J.1    Lee, K.M.2
  • 31
    • 84863049929 scopus 로고    scopus 로고
    • Tracking by sampling trackers
    • 6
    • J. Kwon and K. M. Lee. Tracking by sampling trackers. In ICCV, 2011.
    • (2011) ICCV
    • Kwon, J.1    Lee, K.M.2
  • 32
    • 84973858571 scopus 로고    scopus 로고
    • Key-segments for video object segmentation
    • 1, 2, 3, 6, 7, 8
    • Y. J. Lee, J. Kim, and K. Grauman. Key-segments for video object segmentation. In CVPR, 2011.
    • (2011) CVPR
    • Lee, Y.J.1    Kim, J.2    Grauman, K.3
  • 33
    • 84898791742 scopus 로고    scopus 로고
    • Video segmentation by tracking many figure-ground segments
    • 1, 2, 5, 6, 7, 8
    • F. Li, T. Kim, A. Humayun, D. Tsai, and J. M. Rehg. Video segmentation by tracking many figure-ground segments. In ICCV, 2013.
    • (2013) ICCV
    • Li, F.1    Kim, T.2    Humayun, A.3    Tsai, D.4    Rehg, J.M.5
  • 34
    • 84959247253 scopus 로고    scopus 로고
    • Reliable patch trackers: Robust visual tracking by exploiting reliable patches
    • 6
    • Y. Li, J. Zhu, and S. C. Hoi. Reliable patch trackers: Robust visual tracking by exploiting reliable patches. In CVPR, 2015.
    • (2015) CVPR
    • Li, Y.1    Zhu, J.2    Hoi, S.C.3
  • 36
    • 84866715415 scopus 로고    scopus 로고
    • Higher order motion models and spectral clustering
    • 2
    • P. Ochs and T. Brox. Higher order motion models and spectral clustering. In CVPR, 2012.
    • (2012) CVPR
    • Ochs, P.1    Brox, T.2
  • 37
    • 84901822916 scopus 로고    scopus 로고
    • Segmentation of moving objects by long term video analysis
    • 2
    • P. Ochs, J. Malik, and T. Brox. Segmentation of moving objects by long term video analysis. PAMI, 2014.
    • (2014) PAMI
    • Ochs, P.1    Malik, J.2    Brox, T.3
  • 39
    • 84887376787 scopus 로고    scopus 로고
    • Hierarchical video representation with trajectory binary partition tree
    • 2
    • G. Palou and P. Salembier. Hierarchical video representation with trajectory binary partition tree. In CVPR, 2013.
    • (2013) CVPR
    • Palou, G.1    Salembier, P.2
  • 40
    • 84898831797 scopus 로고    scopus 로고
    • Fast object segmentation in unconstrained video
    • 1, 2, 7
    • A. Papazoglou and V. Ferrari. Fast object segmentation in unconstrained video. In ICCV, 2013.
    • (2013) ICCV
    • Papazoglou, A.1    Ferrari, V.2
  • 42
    • 80052904076 scopus 로고    scopus 로고
    • Globallyoptimal greedy algorithms for tracking a variable number of objects
    • 6
    • H. Pirsiavash, D. Ramanan, and C. C. Fowlkes. Globallyoptimal greedy algorithms for tracking a variable number of objects. In CVPR, 2011.
    • (2011) CVPR
    • Pirsiavash, H.1    Ramanan, D.2    Fowlkes, C.C.3
  • 46
    • 0032316381 scopus 로고    scopus 로고
    • Motion segmentation and tracking using normalized cuts
    • 1
    • J. Shi and J. Malik. Motion segmentation and tracking using normalized cuts. In ICCV, 1998.
    • (1998) ICCV
    • Shi, J.1    Malik, J.2
  • 47
    • 79952783476 scopus 로고    scopus 로고
    • Dense point trajectories by GPU-accelerated large displacement optical flow
    • 8
    • N. Sundaram, T. Brox, and K. Keutzer. Dense point trajectories by gpu-accelerated large displacement optical flow. In ECCV, 2010.
    • (2010) ECCV
    • Sundaram, N.1    Brox, T.2    Keutzer, K.3
  • 48
    • 84887368146 scopus 로고    scopus 로고
    • Self-paced learning for long-term tracking
    • 2
    • J. S. Supancic and D. Ramanan. Self-paced learning for long-term tracking. In CVPR, 2013.
    • (2013) CVPR
    • Supancic, J.S.1    Ramanan, D.2
  • 51
    • 80052926908 scopus 로고    scopus 로고
    • Multiple hypothesis video segmentation from superpixel flows
    • 1
    • A. Vazquez-Reina, S. Avidan, H. Pfister, and E. Miller. Multiple Hypothesis Video Segmentation from Superpixel Flows. In ECCV, 2010.
    • (2010) ECCV
    • Vazquez-Reina, A.1    Avidan, S.2    Pfister, H.3    Miller, E.4
  • 52
    • 84973856013 scopus 로고    scopus 로고
    • Visual tracking with fully convolutional networks
    • 6
    • L. Wang, W. Ouyang, X. Wang, and H. Lu. Visual tracking with fully convolutional networks. In ICCV, 2015.
    • (2015) ICCV
    • Wang, L.1    Ouyang, W.2    Wang, X.3    Lu, H.4
  • 53
    • 84959191527 scopus 로고    scopus 로고
    • Saliency-aware geodesic video object segmentation
    • 2, 7
    • W. Wang, J. Shen, and F. Porikli. Saliency-aware geodesic video object segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Wang, W.1    Shen, J.2    Porikli, F.3
  • 54
    • 84959236471 scopus 로고    scopus 로고
    • Jots: Joint online tracking and segmentation
    • 6, 7
    • L. Wen, D. Du, Z. Lei, S. Z. Li, and M.-H. Yang. Jots: Joint online tracking and segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Wen, L.1    Du, D.2    Lei, Z.3    Li, S.Z.4    Yang, M.-H.5
  • 55
    • 84887348427 scopus 로고    scopus 로고
    • Online object tracking: A benchmark
    • 2, 5, 6, 7
    • Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A benchmark. In CVPR, 2013.
    • (2013) CVPR
    • Wu, Y.1    Lim, J.2    Yang, M.-H.3
  • 56
    • 84866688605 scopus 로고    scopus 로고
    • Evaluation of super-voxel methods for early video processing
    • 2
    • C. Xu and J. J. Corso. Evaluation of super-voxel methods for early video processing. In CVPR, 2012.
    • (2012) CVPR
    • Xu, C.1    Corso, J.J.2
  • 57
    • 84881103424 scopus 로고    scopus 로고
    • Streaming hierarchical video segmentation
    • 1
    • C. Xu, C. Xiong, and J. Corso. Streaming hierarchical video segmentation. In ECCV, 2012.
    • (2012) ECCV
    • Xu, C.1    Xiong, C.2    Corso, J.3
  • 58
    • 84887400612 scopus 로고    scopus 로고
    • Video object segmentation through spatially accurate and temporally dense extraction of primary object regions
    • 7
    • D. Zhang, O. Javed, and M. Shah. Video object segmentation through spatially accurate and temporally dense extraction of primary object regions. In CVPR, 2013.
    • (2013) CVPR
    • Zhang, D.1    Javed, O.2    Shah, M.3
  • 59
    • 84866648566 scopus 로고    scopus 로고
    • Robust object tracking via sparsity-based collaborative model
    • 2, 6
    • W. Zhong, H. Lu, and M.-H. Yang. Robust object tracking via sparsity-based collaborative model. In CVPR, 2012.
    • (2012) CVPR
    • Zhong, W.1    Lu, H.2    Yang, M.-H.3
  • 60
    • 85009853104 scopus 로고    scopus 로고
    • Edge boxes: Locating object proposals from edges
    • 1, 3
    • C. L. Zitnick and P. Dollár. Edge boxes: Locating object proposals from edges. In ECCV, 2014.
    • (2014) ECCV
    • Zitnick, C.L.1    Dollár, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.