메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 5318-5326

Learning to select pre-trained deep representations with Bayesian evidence framework

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; COMPUTER VISION; NEURAL NETWORKS;

EID: 84986313422     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.574     Document Type: Conference Paper
Times cited : (15)

References (37)
  • 1
    • 0000665315 scopus 로고
    • On Bernoulli's numerical solution of algebraic equations
    • 2, 5
    • A. C. Aitken. On Bernoulli's numerical solution of algebraic equations. Proceedings of the Royal Society of Edinburgh, 46: 289-305, 1927.
    • (1927) Proceedings of the Royal Society of Edinburgh , vol.46 , pp. 289-305
    • Aitken, A.C.1
  • 5
    • 84856647890 scopus 로고    scopus 로고
    • Describing people: A poselet-based approach to attribute classification
    • 7
    • L. D. Bourdev, S. Maji, and J. Malik. Describing people: A poselet-based approach to attribute classification. In ICCV, 2011.
    • (2011) ICCV
    • Bourdev, L.D.1    Maji, S.2    Malik, J.3
  • 6
    • 85072028231 scopus 로고    scopus 로고
    • Return of the devil in the details: Delving deep into convolutional nets
    • 1, 2
    • K. Chatfield, K. Simonyan, A. Vedaldi, and a. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. In BMVC, 2014.
    • (2014) BMVC
    • Chatfield, K.1    Simonyan, K.2    Vedaldi, A.3    Zisserman, A.4
  • 10
    • 50949133669 scopus 로고    scopus 로고
    • LIBLINEAR: A library for large linear classification
    • 6
    • R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, and C. J. Lin. LIBLINEAR: A library for large linear classification. JMLR, 9: 1871-1874, 2008.
    • (2008) JMLR , vol.9 , pp. 1871-1874
    • Fan, R.E.1    Chang, K.W.2    Hsieh, C.J.3    Wang, X.R.4    Lin, C.J.5
  • 12
    • 34047174674 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
    • 7
    • L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. CVIU, 106 (1): 59-70, 2007.
    • (2007) CVIU , vol.106 , Issue.1 , pp. 59-70
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 13
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • 1, 2
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 15
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification wit deep convolutional neural networks
    • 2
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification wit deep convolutional neural networks. In NIPS, volume 25, 2012.
    • (2012) NIPS , vol.25
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 16
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • 1, 3
    • D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4 (3): 415-447, 1992.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 415-447
    • MacKay, D.J.C.1
  • 17
    • 84986296977 scopus 로고    scopus 로고
    • Learning multi-domain convolutional neural networks for visual tracking
    • 1
    • H. Nam and B. Han. Learning multi-domain convolutional neural networks for visual tracking. In CVPR, 2016.
    • (2016) CVPR
    • Nam, H.1    Han, B.2
  • 19
    • 84973879016 scopus 로고    scopus 로고
    • Learning deconvolution network for semantic segmentation
    • 1
    • H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation. In ICCV, 2015.
    • (2015) ICCV
    • Noh, H.1    Hong, S.2    Han, B.3
  • 21
    • 84911449395 scopus 로고    scopus 로고
    • Learning and transferring mid-level image representations using convolutional neural networks
    • 1, 2, 6
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image representations using convolutional neural networks. In CVPR, 2014.
    • (2014) CVPR
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 22
    • 85047052471 scopus 로고    scopus 로고
    • Recognizing indoor scenes
    • 7
    • A. Quattoni and A. Torrabla. Recognizing indoor scenes. In CVPR, 2009.
    • (2009) CVPR
    • Quattoni, A.1    Torrabla, A.2
  • 24
    • 85083951635 scopus 로고    scopus 로고
    • OverFeat: Integrated recognition, localization and detection using convolutional networks
    • 2
    • P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. OverFeat: Integrated recognition, localization and detection using convolutional networks. In ICLR, 2014.
    • (2014) ICLR
    • Sermanet, P.1    Eigen, D.2    Zhang, X.3    Mathieu, M.4    Fergus, R.5    LeCun, Y.6
  • 25
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • 2, 6, 8
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 26
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • 1
    • J. A. K. Suykens and J. Vandewalle. Least squares support vector machine classifiers. Neural Processing Letters, 9 (3): 293-300, 1999.
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 29
    • 0036582564 scopus 로고    scopus 로고
    • Bayesian framework for least-squares support vector machine classifiers, Gaussian processes, and kernel fisher discriminant analysis
    • 1, 3
    • T. Van Gestel, J. A. K. Suykens, G. Lanckrie, A. Lambrechts, B. D. Moor, and J. Vandewalle. Bayesian framework for least-squares support vector machine classifiers, Gaussian processes, and kernel fisher discriminant analysis. Neural Computation, 14 (5): 1115-1147, 2002.
    • (2002) Neural Computation , vol.14 , Issue.5 , pp. 1115-1147
    • Van Gestel, T.1    Suykens, J.A.K.2    Lanckrie, G.3    Lambrechts, A.4    Moor, B.D.5    Vandewalle, J.6
  • 32
    • 77955988947 scopus 로고    scopus 로고
    • SUN database: Large-scale scene recognition from abbey to zoo
    • 7
    • J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torrabla. SUN database: Large-scale scene recognition from abbey to zoo. In CVPR, 2010.
    • (2010) CVPR
    • Xiao, J.1    Hays, J.2    Ehinger, K.A.3    Oliva, A.4    Torrabla, A.5
  • 33
    • 84856672971 scopus 로고    scopus 로고
    • Action recognition by learning bases of action attributes and parts
    • 7
    • B. Yao, X. Jiang, A. Khosla, A. L. Lin, L. J. Guibas, and L. Fei-Fei. Action recognition by learning bases of action attributes and parts. In ICCV, 2011.
    • (2011) ICCV
    • Yao, B.1    Jiang, X.2    Khosla, A.3    Lin, A.L.4    Guibas, L.J.5    Fei-Fei, L.6
  • 34
    • 85009899017 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • 2, 6
    • M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014.
    • (2014) ECCV
    • Zeiler, M.D.1    Fergus, R.2
  • 36
    • 84956617559 scopus 로고    scopus 로고
    • Partbased R-CNNs for fine-grained category detection
    • 1, 2, 6
    • N. Zhang, J. Donahue, R. Girshick, and T. Darrell. Partbased R-CNNs for fine-grained category detection. In ECCV, 2014.
    • (2014) ECCV
    • Zhang, N.1    Donahue, J.2    Girshick, R.3    Darrell, T.4
  • 37
    • 10044277812 scopus 로고    scopus 로고
    • SVM vs regularized least squares classification
    • 2
    • P. Zhang and J. Peng. SVM vs regularized least squares classification. In ICPR, 2004.
    • (2004) ICPR
    • Zhang, P.1    Peng, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.