-
1
-
-
0025725905
-
Instance-based learning algorithms
-
Aha, D., & Kibler, D. (1991). Instance-based learning algorithms. Machine Learning, 6, 37-66.
-
(1991)
Machine Learning
, vol.6
, pp. 37-66
-
-
Aha, D.1
Kibler, D.2
-
2
-
-
24044435942
-
Reducing multiclass to binary: A unifying approach for margin classifiers
-
Allwein, E. L., Schapire, R. E., & Singer, Y. (2000). Reducing multiclass to binary: A unifying approach for margin classifiers. Journal of Machine Learning Research, 1, 113-141.
-
(2000)
Journal of Machine Learning Research
, vol.1
, pp. 113-141
-
-
Allwein, E.L.1
Schapire, R.E.2
Singer, Y.3
-
3
-
-
0034296402
-
Generalized discriminant analysis using a Kernel approach
-
Baudat, G., & Anouar, F. (2000). Generalized discriminant analysis using a Kernel approach. Neural Computation, 12, 2385-2404.
-
(2000)
Neural Computation
, vol.12
, pp. 2385-2404
-
-
Baudat, G.1
Anouar, F.2
-
4
-
-
33744958288
-
Nearest neighbor classification from multiple feature subsets
-
Bay, S. D. (1999). Nearest neighbor classification from multiple feature subsets. Intelligent Data Analysis, 3, 191-209.
-
(1999)
Intelligent Data Analysis
, vol.3
, pp. 191-209
-
-
Bay, S.D.1
-
6
-
-
0003408496
-
-
Irvine, CA: University of California, Dept. of Information and Computer Science
-
Blake, C. L., & Merz, C. J. (1998). UCI Repository of machine learning databases [http://www.ics.uci.edu/̃mlearn/MLRepository.html]. Irvine, CA: University of California, Dept. of Information and Computer Science.
-
(1998)
UCI Repository of Machine Learning Databases
-
-
Blake, C.L.1
Merz, C.J.2
-
8
-
-
0002709342
-
Feature selection via concave minimization and support vector machines
-
J. Shavlik (ed.). Morgan Kaufmann, San Francisco, California
-
Bradley, P. S., & Mangasarian, O. L. (1998). Feature selection via concave minimization and support vector machines. In J. Shavlik (ed.), Machine Learning Proc. of the Fifteenth Int. Conf. (ICML'98) (pp. 82-90). Morgan Kaufmann, San Francisco, California.
-
(1998)
Machine Learning Proc. of the Fifteenth Int. Conf. (ICML'98)
, pp. 82-90
-
-
Bradley, P.S.1
Mangasarian, O.L.2
-
9
-
-
0003802343
-
-
New York: Chapman and Hall
-
Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and Regression Trees. New York: Chapman and Hall.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.3
Stone, C.4
-
10
-
-
0003417806
-
-
University of East Anglia, School of Information Systems, Norwich, Norfolk, U.K.
-
Cawley, G. C. (2000). MATLAB Support Vector Machine Toolbox (v0.54β). [http://theoval.sys.uea.ac.uk/̃gcc/svm/toolbox]. University of East Anglia, School of Information Systems, Norwich, Norfolk, U.K.
-
(2000)
MATLAB Support Vector Machine Toolbox (v0.54β)
-
-
Cawley, G.C.1
-
13
-
-
0030216565
-
Unifying instance-based and rule-based induction
-
Domingos, P. (1996). Unifying instance-based and rule-based induction. Machine Learning, 24, 141-168.
-
(1996)
Machine Learning
, vol.24
, pp. 141-168
-
-
Domingos, P.1
-
14
-
-
0000259511
-
Approximate statistical tests for comparing supervised classification learning algorithms
-
Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10, 1895-1924.
-
(1998)
Neural Computation
, vol.10
, pp. 1895-1924
-
-
Dietterich, T.G.1
-
17
-
-
0034419669
-
Regularization networks and support vector machines
-
Evgeniou, T., Pontil, M., & Poggio, T. (2001). Regularization networks and support vector machines. Advances in Computational Mathematics, 13, 1-50.
-
(2001)
Advances in Computational Mathematics
, vol.13
, pp. 1-50
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
18
-
-
0000764772
-
The use of multiple measurements in taxonomic problems
-
Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7:2, 179-188.
-
(1936)
Annals of Eugenics
, vol.7
, Issue.2
, pp. 179-188
-
-
Fisher, R.A.1
-
20
-
-
0000249788
-
An equivalence between sparse approximation and support vector machines
-
Girosi, F. (1998). An equivalence between sparse approximation and support vector machines. Neural Computation, 10, 1455-1480.
-
(1998)
Neural Computation
, vol.10
, pp. 1455-1480
-
-
Girosi, F.1
-
22
-
-
0001234705
-
Second order derivatives for network pruning: Optimal brain surgeon
-
Hanson, Cowan, & Giles (Eds.). San Mateo, CA: Morgan Kaufmann
-
Hassibi, B., & Stork, D. G. (1993). Second order derivatives for network pruning: Optimal brain surgeon. In Hanson, Cowan, & Giles (Eds.), Advances in Neural Information Processing Systems (Vol. 5). San Mateo, CA: Morgan Kaufmann.
-
(1993)
Advances in Neural Information Processing Systems
, vol.5
-
-
Hassibi, B.1
Stork, D.G.2
-
24
-
-
0027580356
-
Very simple classification rules perform well on most commonly used datasets
-
Holte, R. C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11, 63-90.
-
(1993)
Machine Learning
, vol.11
, pp. 63-90
-
-
Holte, R.C.1
-
25
-
-
0000468432
-
Estimating continuous distributions in Bayesian classifiers
-
Montreal, Quebec, Morgan Kaufmann
-
John, G. H., & Langley, P. (1995). Estimating continuous distributions in Bayesian classifiers. In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (pp. 338-345). Montreal, Quebec, Morgan Kaufmann.
-
(1995)
Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence
, pp. 338-345
-
-
John, G.H.1
Langley, P.2
-
26
-
-
0032594960
-
The evidence framework applied to support vector machines
-
Kwok, J. T. (2000). The evidence framework applied to support vector machines. IEEE Trans. on Neural Networks, 10:5, 1018-1031.
-
(2000)
IEEE Trans. on Neural Networks
, vol.10
, Issue.5
, pp. 1018-1031
-
-
Kwok, J.T.1
-
27
-
-
0000494466
-
Optimal brain damage
-
Touretzky (Ed.). San Mateo, CA: Morgan Kaufmann
-
Le Cun, Y., Denker, J. S., & Solla, S. A. (1990). Optimal brain damage. In Touretzky (Ed.), Advances in Neural Information Processing Systems (Vol. 2). San Mateo, CA: Morgan Kaufmann.
-
(1990)
Advances in Neural Information Processing Systems
, vol.2
-
-
Le Cun, Y.1
Denker, J.S.2
Solla, S.A.3
-
28
-
-
0034274591
-
A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
-
Lim, T.-S., Loh, W.-Y., & Shih, Y.-S. (2000). A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Machine Learning, 40:3, 203-228.
-
(2000)
Machine Learning
, vol.40
, Issue.3
, pp. 203-228
-
-
Lim, T.-S.1
Loh, W.-Y.2
Shih, Y.-S.3
-
29
-
-
0001441372
-
Probable networks and plausible predictions - A review of practical Bayesian methods for supervised neural networks
-
MacKay, D. J. C. (1995). Probable networks and plausible predictions - A review of practical Bayesian methods for supervised neural networks. Network: Computation in Neural Systems, 6, 469-505.
-
(1995)
Network: Computation in Neural Systems
, vol.6
, pp. 469-505
-
-
MacKay, D.J.C.1
-
30
-
-
0033337021
-
Fisher discriminant analysis with Kernels
-
Mika, S., Rätsch, G., Weston, J., Schölkopf, B., & Müller, K.-R. (1999). Fisher discriminant analysis with Kernels. In Proc. IEEE Neural Networks for Signal Processing Workshop 1999, NNSP 99.
-
(1999)
Proc. IEEE Neural Networks for Signal Processing Workshop 1999, NNSP 99
-
-
Mika, S.1
Rätsch, G.2
Weston, J.3
Schölkopf, B.4
Müller, K.-R.5
-
31
-
-
0035441377
-
Weighted least squares training of support vector classifiers leading to compact and adaptive schemes
-
Navia-Vázquez, A., Pérez-Cruz, F., Artés-Rodríguez, A., Figueiras-Vidál, A. R. (2001). Weighted least squares training of support vector classifiers leading to compact and adaptive schemes. IEEE Transactions on Neural Networks, 12, 1047-1059.
-
(2001)
IEEE Transactions on Neural Networks
, vol.12
, pp. 1047-1059
-
-
Navia-Vázquez, A.1
Pérez-Cruz, F.2
Artés-Rodríguez, A.3
Figueiras-Vidál, A.R.4
-
32
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Schölkopf, C. J. C. Burges, & A. J. Smola (Eds.), Cambridge, MA
-
Platt, J. (1998). Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. J. C. Burges, & A. J. Smola (Eds.), Advances in Kernel Methods - Support Vector Learning. Cambridge, MA.
-
(1998)
Advances in Kernel Methods - Support Vector Learning
-
-
Platt, J.1
-
37
-
-
0031272926
-
Comparing support vector machines with Gaussian Kernels to radial basis function classifiers
-
Schölkopf, B., Sung, K.-K., Burges, C., Girosi, F., Niyogi, P., Poggio, T., & Vapnik, V. (1997). Comparing support vector machines with Gaussian Kernels to radial basis function classifiers. IEEE Transactions on Signal Processing, 45, 2758-2765.
-
(1997)
IEEE Transactions on Signal Processing
, vol.45
, pp. 2758-2765
-
-
Schölkopf, B.1
Sung, K.-K.2
Burges, C.3
Girosi, F.4
Niyogi, P.5
Poggio, T.6
Vapnik, V.7
-
39
-
-
0000383868
-
Parallel networks that learn to pronounce English text
-
Sejnowski, T. J., & Rosenberg, C. R. (1987). Parallel networks that learn to pronounce English text. Journal of Complex Systems, 1:1, 145-168.
-
(1987)
Journal of Complex Systems
, vol.1
, Issue.1
, pp. 145-168
-
-
Sejnowski, T.J.1
Rosenberg, C.R.2
-
40
-
-
0032098361
-
The connection between regularization operators and support vector kernels
-
Smola, A., Schölkopf, B., & Müller, K.-R. (1998). The connection between regularization operators and support vector kernels. Neural Networks, 11, 637-649.
-
(1998)
Neural Networks
, vol.11
, pp. 637-649
-
-
Smola, A.1
Schölkopf, B.2
Müller, K.-R.3
-
41
-
-
0004240479
-
-
PhD Thesis, published by: GMD, Birlinghoven
-
Smola, A. (1999). Learning with Kernels. PhD Thesis, published by: GMD, Birlinghoven.
-
(1999)
Learning with Kernels
-
-
Smola, A.1
-
43
-
-
0032634974
-
Training multilayer perception classifiers based on a modified support vector method
-
Suykens, J. A. K., & Vandewalle, J. (1999a). Training multilayer perception classifiers based on a modified support vector method. IEEE Transactions on Neural Networks, 10, 907-912.
-
(1999)
IEEE Transactions on Neural Networks
, vol.10
, pp. 907-912
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
44
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens, J. A. K., & Vandewalle, J. (1999b). Least squares support vector machine classifiers. Neural Processing Letters, 9, 293-300.
-
(1999)
Neural Processing Letters
, vol.9
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
45
-
-
0001874815
-
Least squares support vector machine classifiers: A large scale algorithm
-
Suykens, J. A. K., Lukas, L., Van Dooren, P., De Moor, B., & Vandewalle, J. (1999). Least squares support vector machine classifiers: A large scale algorithm. In Proc. of the European Conf. on Circuit Theory and Design (ECCTD'99) (pp. 839-842).
-
(1999)
Proc. of the European Conf. on Circuit Theory and Design (ECCTD'99)
, pp. 839-842
-
-
Suykens, J.A.K.1
Lukas, L.2
Van Dooren, P.3
De Moor, B.4
Vandewalle, J.5
-
47
-
-
0036825528
-
Weighted least squares support vector machines: Robustness and sparse approximation
-
Suykens, J. A. K., De Brabanter, J., Lukas, L., & Vandewalle, J. (2002). Weighted least squares support vector machines: Robustness and sparse approximation. Neurocomputing, 48:1-4, 85-105.
-
(2002)
Neurocomputing
, vol.48
, Issue.1-4
, pp. 85-105
-
-
Suykens, J.A.K.1
De Brabanter, J.2
Lukas, L.3
Vandewalle, J.4
-
49
-
-
0035181296
-
Optimal control by least squares support vector machines
-
Suykens, J. A. K., Vandewalle, J., & De Moor, B. (2001). Optimal control by least squares support vector machines. Neural Networks, 14, 23-35.
-
(2001)
Neural Networks
, vol.14
, pp. 23-35
-
-
Suykens, J.A.K.1
Vandewalle, J.2
De Moor, B.3
-
50
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1, 211-244.
-
(2001)
Journal of Machine Learning Research
, vol.1
, pp. 211-244
-
-
Tipping, M.E.1
-
52
-
-
0035392694
-
Predicting financial time series using least squares support vector machines within the evidence framework
-
Van Gestel, T., Suykens, J. A. K., Baestaens, D.-E., Lambrechts, A., Lanckriet, G., Vandaele, B., De Moor, B., & Vandewalle, J. (2001). Predicting financial time series using least squares support vector machines within the evidence framework. IEEE Transactions on Neural Networks, (Special Issue on Financial Engineering), 12, 809-821.
-
(2001)
IEEE Transactions on Neural Networks, (Special Issue on Financial Engineering)
, vol.12
, pp. 809-821
-
-
Van Gestel, T.1
Suykens, J.A.K.2
Baestaens, D.-E.3
Lambrechts, A.4
Lanckriet, G.5
Vandaele, B.6
De Moor, B.7
Vandewalle, J.8
-
53
-
-
0036582564
-
A Bayesian framework for least squares support vector machine classifiers
-
Van Gestel, T., Suykens, J. A. K., Lanckriet, G., Lambrechts, A., De Moor, B., & Vandewalle, J. (2002). A Bayesian framework for least squares support vector machine classifiers. Neural Computation, 14, 1115-1148.
-
(2002)
Neural Computation
, vol.14
, pp. 1115-1148
-
-
Van Gestel, T.1
Suykens, J.A.K.2
Lanckriet, G.3
Lambrechts, A.4
De Moor, B.5
Vandewalle, J.6
-
56
-
-
0002660750
-
The support vector method of function estimation
-
J. A. K. Suykens, & J. Vandewalle, (Eds.). Boston: Kluwer Academic Publishers
-
Vapnik, V. (1998b). The support vector method of function estimation. In J. A. K. Suykens, & J. Vandewalle, (Eds.), Nonlinear Modeling: Advanced Black-box Techniques. Boston: Kluwer Academic Publishers.
-
(1998)
Nonlinear Modeling: Advanced Black-box Techniques
-
-
Vapnik, V.1
-
57
-
-
0035449520
-
Knowledge discovery in a direct marketing case using least squares support vector machine classifiers
-
Viaene, S., Baesens, B., Van Gestel, T., Suykens, J. A. K., Van den Poel, D., Vanthienen, J., De Moor, B., & Dedene, G. (2001). Knowledge discovery in a direct marketing case using least squares support vector machine classifiers. International Journal of Intelligent Systems, 9, 1023-1036.
-
(2001)
International Journal of Intelligent Systems
, vol.9
, pp. 1023-1036
-
-
Viaene, S.1
Baesens, B.2
Van Gestel, T.3
Suykens, J.A.K.4
Van den Poel, D.5
Vanthienen, J.6
De Moor, B.7
Dedene, G.8
-
58
-
-
0003017575
-
Prediction with Gaussian processes: From linear regression to linear prediction and beyond
-
M. I. Jordan (Ed.). Kluwer Academic Press
-
Williams, C. K. I. (1998). Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In M. I. Jordan (Ed.), Learning and Inference in Graphical Models. Kluwer Academic Press.
-
(1998)
Learning and Inference in Graphical Models
-
-
Williams, C.K.I.1
|