메뉴 건너뛰기




Volumn 54, Issue 1, 2004, Pages 5-32

Benchmarking Least Squares Support Vector Machine Classifiers

Author keywords

Least squares support vector machines; Multiclass support vector machines; Sparse approximation

Indexed keywords

ALGORITHMS; BENCHMARKING; ENCODING (SYMBOLS); FUNCTIONS; LEAST SQUARES APPROXIMATIONS; LINEAR EQUATIONS; NONLINEAR PROGRAMMING; OPTIMIZATION; POLYNOMIALS; PROBLEM SOLVING; RADIAL BASIS FUNCTION NETWORKS; REGRESSION ANALYSIS; STATISTICAL METHODS; TREES (MATHEMATICS); VECTORS;

EID: 0242288903     PISSN: 08856125     EISSN: None     Source Type: Journal    
DOI: 10.1023/B:MACH.0000008082.80494.e0     Document Type: Review
Times cited : (688)

References (59)
  • 1
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Aha, D., & Kibler, D. (1991). Instance-based learning algorithms. Machine Learning, 6, 37-66.
    • (1991) Machine Learning , vol.6 , pp. 37-66
    • Aha, D.1    Kibler, D.2
  • 2
    • 24044435942 scopus 로고    scopus 로고
    • Reducing multiclass to binary: A unifying approach for margin classifiers
    • Allwein, E. L., Schapire, R. E., & Singer, Y. (2000). Reducing multiclass to binary: A unifying approach for margin classifiers. Journal of Machine Learning Research, 1, 113-141.
    • (2000) Journal of Machine Learning Research , vol.1 , pp. 113-141
    • Allwein, E.L.1    Schapire, R.E.2    Singer, Y.3
  • 3
    • 0034296402 scopus 로고    scopus 로고
    • Generalized discriminant analysis using a Kernel approach
    • Baudat, G., & Anouar, F. (2000). Generalized discriminant analysis using a Kernel approach. Neural Computation, 12, 2385-2404.
    • (2000) Neural Computation , vol.12 , pp. 2385-2404
    • Baudat, G.1    Anouar, F.2
  • 4
    • 33744958288 scopus 로고    scopus 로고
    • Nearest neighbor classification from multiple feature subsets
    • Bay, S. D. (1999). Nearest neighbor classification from multiple feature subsets. Intelligent Data Analysis, 3, 191-209.
    • (1999) Intelligent Data Analysis , vol.3 , pp. 191-209
    • Bay, S.D.1
  • 6
    • 0003408496 scopus 로고    scopus 로고
    • Irvine, CA: University of California, Dept. of Information and Computer Science
    • Blake, C. L., & Merz, C. J. (1998). UCI Repository of machine learning databases [http://www.ics.uci.edu/̃mlearn/MLRepository.html]. Irvine, CA: University of California, Dept. of Information and Computer Science.
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.L.1    Merz, C.J.2
  • 8
    • 0002709342 scopus 로고    scopus 로고
    • Feature selection via concave minimization and support vector machines
    • J. Shavlik (ed.). Morgan Kaufmann, San Francisco, California
    • Bradley, P. S., & Mangasarian, O. L. (1998). Feature selection via concave minimization and support vector machines. In J. Shavlik (ed.), Machine Learning Proc. of the Fifteenth Int. Conf. (ICML'98) (pp. 82-90). Morgan Kaufmann, San Francisco, California.
    • (1998) Machine Learning Proc. of the Fifteenth Int. Conf. (ICML'98) , pp. 82-90
    • Bradley, P.S.1    Mangasarian, O.L.2
  • 10
    • 0003417806 scopus 로고    scopus 로고
    • University of East Anglia, School of Information Systems, Norwich, Norfolk, U.K.
    • Cawley, G. C. (2000). MATLAB Support Vector Machine Toolbox (v0.54β). [http://theoval.sys.uea.ac.uk/̃gcc/svm/toolbox]. University of East Anglia, School of Information Systems, Norwich, Norfolk, U.K.
    • (2000) MATLAB Support Vector Machine Toolbox (v0.54β)
    • Cawley, G.C.1
  • 13
    • 0030216565 scopus 로고    scopus 로고
    • Unifying instance-based and rule-based induction
    • Domingos, P. (1996). Unifying instance-based and rule-based induction. Machine Learning, 24, 141-168.
    • (1996) Machine Learning , vol.24 , pp. 141-168
    • Domingos, P.1
  • 14
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10, 1895-1924.
    • (1998) Neural Computation , vol.10 , pp. 1895-1924
    • Dietterich, T.G.1
  • 15
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • Dietterich, T. G., & Bakiri, G. (1995). Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence Research, 2, 263-286.
    • (1995) Journal of Artificial Intelligence Research , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 18
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7:2, 179-188.
    • (1936) Annals of Eugenics , vol.7 , Issue.2 , pp. 179-188
    • Fisher, R.A.1
  • 20
    • 0000249788 scopus 로고    scopus 로고
    • An equivalence between sparse approximation and support vector machines
    • Girosi, F. (1998). An equivalence between sparse approximation and support vector machines. Neural Computation, 10, 1455-1480.
    • (1998) Neural Computation , vol.10 , pp. 1455-1480
    • Girosi, F.1
  • 22
    • 0001234705 scopus 로고
    • Second order derivatives for network pruning: Optimal brain surgeon
    • Hanson, Cowan, & Giles (Eds.). San Mateo, CA: Morgan Kaufmann
    • Hassibi, B., & Stork, D. G. (1993). Second order derivatives for network pruning: Optimal brain surgeon. In Hanson, Cowan, & Giles (Eds.), Advances in Neural Information Processing Systems (Vol. 5). San Mateo, CA: Morgan Kaufmann.
    • (1993) Advances in Neural Information Processing Systems , vol.5
    • Hassibi, B.1    Stork, D.G.2
  • 24
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • Holte, R. C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11, 63-90.
    • (1993) Machine Learning , vol.11 , pp. 63-90
    • Holte, R.C.1
  • 26
    • 0032594960 scopus 로고    scopus 로고
    • The evidence framework applied to support vector machines
    • Kwok, J. T. (2000). The evidence framework applied to support vector machines. IEEE Trans. on Neural Networks, 10:5, 1018-1031.
    • (2000) IEEE Trans. on Neural Networks , vol.10 , Issue.5 , pp. 1018-1031
    • Kwok, J.T.1
  • 28
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
    • Lim, T.-S., Loh, W.-Y., & Shih, Y.-S. (2000). A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Machine Learning, 40:3, 203-228.
    • (2000) Machine Learning , vol.40 , Issue.3 , pp. 203-228
    • Lim, T.-S.1    Loh, W.-Y.2    Shih, Y.-S.3
  • 29
    • 0001441372 scopus 로고
    • Probable networks and plausible predictions - A review of practical Bayesian methods for supervised neural networks
    • MacKay, D. J. C. (1995). Probable networks and plausible predictions - A review of practical Bayesian methods for supervised neural networks. Network: Computation in Neural Systems, 6, 469-505.
    • (1995) Network: Computation in Neural Systems , vol.6 , pp. 469-505
    • MacKay, D.J.C.1
  • 32
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schölkopf, C. J. C. Burges, & A. J. Smola (Eds.), Cambridge, MA
    • Platt, J. (1998). Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. J. C. Burges, & A. J. Smola (Eds.), Advances in Kernel Methods - Support Vector Learning. Cambridge, MA.
    • (1998) Advances in Kernel Methods - Support Vector Learning
    • Platt, J.1
  • 39
    • 0000383868 scopus 로고
    • Parallel networks that learn to pronounce English text
    • Sejnowski, T. J., & Rosenberg, C. R. (1987). Parallel networks that learn to pronounce English text. Journal of Complex Systems, 1:1, 145-168.
    • (1987) Journal of Complex Systems , vol.1 , Issue.1 , pp. 145-168
    • Sejnowski, T.J.1    Rosenberg, C.R.2
  • 40
    • 0032098361 scopus 로고    scopus 로고
    • The connection between regularization operators and support vector kernels
    • Smola, A., Schölkopf, B., & Müller, K.-R. (1998). The connection between regularization operators and support vector kernels. Neural Networks, 11, 637-649.
    • (1998) Neural Networks , vol.11 , pp. 637-649
    • Smola, A.1    Schölkopf, B.2    Müller, K.-R.3
  • 41
    • 0004240479 scopus 로고    scopus 로고
    • PhD Thesis, published by: GMD, Birlinghoven
    • Smola, A. (1999). Learning with Kernels. PhD Thesis, published by: GMD, Birlinghoven.
    • (1999) Learning with Kernels
    • Smola, A.1
  • 43
    • 0032634974 scopus 로고    scopus 로고
    • Training multilayer perception classifiers based on a modified support vector method
    • Suykens, J. A. K., & Vandewalle, J. (1999a). Training multilayer perception classifiers based on a modified support vector method. IEEE Transactions on Neural Networks, 10, 907-912.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , pp. 907-912
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 44
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens, J. A. K., & Vandewalle, J. (1999b). Least squares support vector machine classifiers. Neural Processing Letters, 9, 293-300.
    • (1999) Neural Processing Letters , vol.9 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 47
    • 0036825528 scopus 로고    scopus 로고
    • Weighted least squares support vector machines: Robustness and sparse approximation
    • Suykens, J. A. K., De Brabanter, J., Lukas, L., & Vandewalle, J. (2002). Weighted least squares support vector machines: Robustness and sparse approximation. Neurocomputing, 48:1-4, 85-105.
    • (2002) Neurocomputing , vol.48 , Issue.1-4 , pp. 85-105
    • Suykens, J.A.K.1    De Brabanter, J.2    Lukas, L.3    Vandewalle, J.4
  • 49
    • 0035181296 scopus 로고    scopus 로고
    • Optimal control by least squares support vector machines
    • Suykens, J. A. K., Vandewalle, J., & De Moor, B. (2001). Optimal control by least squares support vector machines. Neural Networks, 14, 23-35.
    • (2001) Neural Networks , vol.14 , pp. 23-35
    • Suykens, J.A.K.1    Vandewalle, J.2    De Moor, B.3
  • 50
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1, 211-244.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 56
    • 0002660750 scopus 로고    scopus 로고
    • The support vector method of function estimation
    • J. A. K. Suykens, & J. Vandewalle, (Eds.). Boston: Kluwer Academic Publishers
    • Vapnik, V. (1998b). The support vector method of function estimation. In J. A. K. Suykens, & J. Vandewalle, (Eds.), Nonlinear Modeling: Advanced Black-box Techniques. Boston: Kluwer Academic Publishers.
    • (1998) Nonlinear Modeling: Advanced Black-box Techniques
    • Vapnik, V.1
  • 58
    • 0003017575 scopus 로고    scopus 로고
    • Prediction with Gaussian processes: From linear regression to linear prediction and beyond
    • M. I. Jordan (Ed.). Kluwer Academic Press
    • Williams, C. K. I. (1998). Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In M. I. Jordan (Ed.), Learning and Inference in Graphical Models. Kluwer Academic Press.
    • (1998) Learning and Inference in Graphical Models
    • Williams, C.K.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.