-
1
-
-
84937964776
-
Discriminative unsupervised feature learning with convolutional neural networks
-
A.Dosovitskiy, J.T.Springenberg, M.Riedmiller, and T.Brox. Discriminative unsupervised feature learning with convolutional neural networks. In NIPS, 2014.
-
(2014)
NIPS
-
-
Dosovitskiy, A.1
Springenberg, J.T.2
Riedmiller, M.3
Brox, T.4
-
2
-
-
79953048649
-
Contour detection and hierarchical image segmentation
-
P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. TPAMI, 33(5):898-916, 2011.
-
(2011)
TPAMI
, vol.33
, Issue.5
, pp. 898-916
-
-
Arbelaez, P.1
Maire, M.2
Fowlkes, C.3
Malik, J.4
-
3
-
-
80052896727
-
Automatic attribute discovery and characterization from noisy web data
-
T. L. Berg, A. C. Berg, and J. Shih. Automatic attribute discovery and characterization from noisy web data. In ECCV, 2010.
-
(2010)
ECCV
-
-
Berg, T.L.1
Berg, A.C.2
Shih, J.3
-
4
-
-
84872231524
-
Unsupervised feature learning for RGB-D based object recognition
-
L. Bo, X. Ren, and D. Fox. Unsupervised feature learning for RGB-D based object recognition. In ISER, 2012.
-
(2012)
ISER
-
-
Bo, L.1
Ren, X.2
Fox, D.3
-
5
-
-
84887371778
-
Multipath sparse coding using hierarchical matching pursuit
-
L. Bo, X. Ren, and D. Fox. Multipath sparse coding using hierarchical matching pursuit. In CVPR, 2013.
-
(2013)
CVPR
-
-
Bo, L.1
Ren, X.2
Fox, D.3
-
6
-
-
84856649187
-
Ask the locals: Multi-way local pooling for image recognition
-
Y.-L. Boureau, N. Le Roux, F. Bach, J. Ponce, and Y. LeCun. Ask the locals: Multi-way local pooling for image recognition. In ICCV, 2011.
-
(2011)
ICCV
-
-
Boureau, Y.-L.1
Le Roux, N.2
Bach, F.3
Ponce, J.4
LeCun, Y.5
-
7
-
-
79960230920
-
Visual recognition with humans in the loop
-
S. Branson, C. Wah, F. Schroff, B. Babenko, P. Welinder, P. Perona, and S. Belongie. Visual recognition with humans in the loop. In ECCV, 2010.
-
(2010)
ECCV
-
-
Branson, S.1
Wah, C.2
Schroff, F.3
Babenko, B.4
Welinder, P.5
Perona, P.6
Belongie, S.7
-
8
-
-
80053446757
-
An analysis of singlelayer networks in unsupervised feature learning
-
A. Coates, A. Y. Ng, and H. Lee. An analysis of singlelayer networks in unsupervised feature learning. In AISTATS, 2011.
-
(2011)
AISTATS
-
-
Coates, A.1
Ng, A.Y.2
Lee, H.3
-
9
-
-
33645146449
-
Histograms of oriented gradients for human detection
-
N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.
-
(2005)
CVPR
-
-
Dalal, N.1
Triggs, B.2
-
10
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In CVPR, 2009.
-
(2009)
CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.J.4
Li, K.5
Fei-Fei, L.6
-
11
-
-
84898936638
-
Mid-level visual element discovery as discriminative mode seeking
-
C. Doersch, A. Gupta, and A. A. Efros. Mid-level visual element discovery as discriminative mode seeking. In NIPS, 2013.
-
(2013)
NIPS
-
-
Doersch, C.1
Gupta, A.2
Efros, A.A.3
-
12
-
-
84973916088
-
Unsupervised visual representation learning by context prediction
-
C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context prediction. In ICCV, 2015.
-
(2015)
ICCV
-
-
Doersch, C.1
Gupta, A.2
Efros, A.A.3
-
13
-
-
85069371545
-
-
arXiv preprint, arXiv
-
A. Dosovitskiy, P. Fischer, J. T. Springenberg, M. Riedmiller, and T. Brox. Discriminative unsupervised feature learning with exemplar convolutional neural networks. arXiv preprint, arXiv:1406.6909v2, 2015.
-
(2015)
Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks
, vol.1406
, pp. 6909v2
-
-
Dosovitskiy, A.1
Fischer, P.2
Springenberg, J.T.3
Riedmiller, M.4
Brox, T.5
-
14
-
-
84959215516
-
Deep hashing for compact binary codes learning
-
V. Erin Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou. Deep hashing for compact binary codes learning. In CVPR, 2015.
-
(2015)
CVPR
-
-
Erin Liong, V.1
Lu, J.2
Wang, G.3
Moulin, P.4
Zhou, J.5
-
15
-
-
77951298115
-
The pascal visual object classes (VOC) challenge
-
M. Everingham, L. Van Gool, C. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (VOC) challenge. IJCV, 88(2):303-338, 2010.
-
(2010)
IJCV
, vol.88
, Issue.2
, pp. 303-338
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.3
Winn, J.4
Zisserman, A.5
-
17
-
-
84932617705
-
Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
-
L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. In CVPRW, 2004.
-
(2004)
CVPRW
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
18
-
-
84891603587
-
Learning multimodal latent attributes
-
Y. Fu, T. M. Hospedales, T. Xiang, and S. Gong. Learning multimodal latent attributes. TPAMI, 36(2):303-316, 2014.
-
(2014)
TPAMI
, vol.36
, Issue.2
, pp. 303-316
-
-
Fu, Y.1
Hospedales, T.M.2
Xiang, T.3
Gong, S.4
-
19
-
-
84959181749
-
N4-fields: Neural network nearest neighbor fields for image transforms
-
Y. Ganin and V. S. Lempitsky. N4-fields: Neural network nearest neighbor fields for image transforms. In ACCV, 2014.
-
(2014)
ACCV
-
-
Ganin, Y.1
Lempitsky, V.S.2
-
20
-
-
15044355327
-
Similarity search in high dimensions via hashing
-
A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. In VLDB, 1999.
-
(1999)
VLDB
-
-
Gionis, A.1
Indyk, P.2
Motwani, R.3
-
21
-
-
85029359197
-
Fast R-CNN
-
R. Girshick. Fast R-CNN. In ICCV, 2015.
-
(2015)
ICCV
-
-
Girshick, R.1
-
22
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
-
(2014)
CVPR
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
23
-
-
80052874105
-
Iterative quantization: A procrustean approach to learning binary codes
-
Y. Gong and S. Lazebnik. Iterative quantization: A procrustean approach to learning binary codes. In CVPR, 2011.
-
(2011)
CVPR
-
-
Gong, Y.1
Lazebnik, S.2
-
24
-
-
84897486975
-
Direct modeling of complex invariances for visual object features
-
K. Y. Hui. Direct modeling of complex invariances for visual object features. In ICML, 2013.
-
(2013)
ICML
-
-
Hui, K.Y.1
-
25
-
-
84959212200
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
H. Kaiming, Z. Xiangyu, R. Shaoqing, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014.
-
(2014)
ECCV
-
-
Kaiming, H.1
Xiangyu, Z.2
Shaoqing, R.3
Sun, J.4
-
27
-
-
84959204846
-
Simultaneous feature learning and hash coding with deep neural networks
-
H. Lai, Y. Pan, and S. Yan. Simultaneous feature learning and hash coding with deep neural networks. In CVPR, 2015.
-
(2015)
CVPR
-
-
Lai, H.1
Pan, Y.2
Yan, S.3
-
28
-
-
70450172710
-
Learning to detect unseen object classes by between-class attribute transfer
-
C. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by between-class attribute transfer. In CVPR, 2009.
-
(2009)
CVPR
-
-
Lampert, C.1
Nickisch, H.2
Harmeling, S.3
-
30
-
-
84887354170
-
Sketch tokens: A learned mid-level representation for contour and object detection
-
J. Lim, C. L. Zitnick, and P. Dollár. Sketch tokens: A learned mid-level representation for contour and object detection. In CVPR, 2013.
-
(2013)
CVPR
-
-
Lim, J.1
Zitnick, C.L.2
Dollár, P.3
-
31
-
-
85069371074
-
-
arXiv preprint, arXiv
-
J. Lin, O. Morère, J. Petta, V. Chandrasekhar, and A. Veillard. Tiny descriptors for image retrieval with unsupervised triplet hashing. arXiv preprint, arXiv:1511.03055v1, 2015.
-
(2015)
Tiny descriptors for image retrieval with unsupervised triplet hashing
, vol.1511
, pp. 03055v1
-
-
Lin, J.1
Morère, O.2
Petta, J.3
Chandrasekhar, V.4
Veillard, A.5
-
32
-
-
80052915325
-
Recognizing human actions by attributes
-
J. Liu, B. Kuipers, and S. Savarese. Recognizing human actions by attributes. In CVPR, 2011.
-
(2011)
CVPR
-
-
Liu, J.1
Kuipers, B.2
Savarese, S.3
-
33
-
-
84898816416
-
Unsupervised learning of discriminative relative visual attributes
-
S. Ma, S. Sclaroff, and N. Ikizler-Cinbis. Unsupervised learning of discriminative relative visual attributes. In ECCVW, 2012.
-
(2012)
ECCVW
-
-
Ma, S.1
Sclaroff, S.2
Ikizler-Cinbis, N.3
-
35
-
-
80052900722
-
Interactively building a discriminative vocabulary of nameable attributes
-
D. Parikh and K. Grauman. Interactively building a discriminative vocabulary of nameable attributes. In CVPR, 2011.
-
(2011)
CVPR
-
-
Parikh, D.1
Grauman, K.2
-
36
-
-
84986287922
-
Compressed fisher vectors for large scale visual recognition
-
F. Perronnin and J. Sanchez. Compressed fisher vectors for large scale visual recognition. In ICCVW, 2011.
-
(2011)
ICCVW
-
-
Perronnin, F.1
Sanchez, J.2
-
37
-
-
84887356933
-
Attribute discovery via predictable discriminative binary codes
-
M. Rastegari, A. Farhadi, and D. Forsyth. Attribute discovery via predictable discriminative binary codes. In ECCV, 2012.
-
(2012)
ECCV
-
-
Rastegari, M.1
Farhadi, A.2
Forsyth, D.3
-
38
-
-
77955989949
-
What helps where-and why? Semantic relatedness for knowledge transfer
-
M. Rohrbach, M. Stark, G. Szarvas, I. Gurevych, and B. Schiele. What helps where-and why? semantic relatedness for knowledge transfer. In CVPR, 2010.
-
(2010)
CVPR
-
-
Rohrbach, M.1
Stark, M.2
Szarvas, G.3
Gurevych, I.4
Schiele, B.5
-
39
-
-
84856200679
-
Attribute learning in largescale datasets
-
O. Russakovsky and L. Fei-Fei. Attribute learning in largescale datasets. In ECCVW, 2010.
-
(2010)
ECCVW
-
-
Russakovsky, O.1
Fei-Fei, L.2
-
41
-
-
84959219836
-
Deep carving: Discovering visual attributes by carving deep neural nets
-
S. Shankar, V. K. Garg, and R. Cipolla. Deep carving: Discovering visual attributes by carving deep neural nets. In CVPR, 2015.
-
(2015)
CVPR
-
-
Shankar, S.1
Garg, V.K.2
Cipolla, R.3
-
42
-
-
84898796869
-
Semantic transform: Weakly supervised semantic inference for relating visual attributes
-
S. Shankar, J. Lasenby, and R. Cipolla. Semantic transform: Weakly supervised semantic inference for relating visual attributes. In ICCV, 2013.
-
(2013)
ICCV
-
-
Shankar, S.1
Lasenby, J.2
Cipolla, R.3
-
43
-
-
84944761614
-
Deepcontour: A deep convolutional feature learned by positivesharing loss for contour detection
-
W. Shen, X. Wang, Y. Wang, X. Bai, and Z. Zhang. Deepcontour: A deep convolutional feature learned by positivesharing loss for contour detection. In CVPR, 2015.
-
(2015)
CVPR
-
-
Shen, W.1
Wang, X.2
Wang, Y.3
Bai, X.4
Zhang, Z.5
-
44
-
-
84884958786
-
Unsupervised discovery of mid-level discriminative patches
-
S. Singh, A. Gupta, and A. A. Efros. Unsupervised discovery of mid-level discriminative patches. In ECCV, 2012.
-
(2012)
ECCV
-
-
Singh, S.1
Gupta, A.2
Efros, A.A.3
-
46
-
-
77955988108
-
Semi-supervised hashing for scalable image retrieval
-
J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hashing for scalable image retrieval. In CVPR, 2010.
-
(2010)
CVPR
-
-
Wang, J.1
Kumar, S.2
Chang, S.-F.3
-
47
-
-
84973889989
-
Unsupervised learning of visual representations using videos
-
X.Wang and A. Gupta. Unsupervised learning of visual representations using videos. In ICCV, 2015.
-
(2015)
ICCV
-
-
Wang, X.1
Gupta, A.2
-
48
-
-
80052913382
-
A discriminative latent model of object classes and attributes
-
Y. Wang and G. Mori. A discriminative latent model of object classes and attributes. In ECCV, 2010.
-
(2010)
ECCV
-
-
Wang, Y.1
Mori, G.2
-
51
-
-
84949870277
-
Supervised hashing for image retrieval via image representation learning
-
R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan. Supervised hashing for image retrieval via image representation learning. In AAAI, 2014.
-
(2014)
AAAI
-
-
Xia, R.1
Pan, Y.2
Lai, H.3
Liu, C.4
Yan, S.5
-
52
-
-
84959240114
-
Deep semantic ranking based hashing for multi-label image retrieval
-
F. Zhao, Y. Huang, L.Wang, and T. Tan. Deep semantic ranking based hashing for multi-label image retrieval. In CVPR, 2015.
-
(2015)
CVPR
-
-
Zhao, F.1
Huang, Y.2
Wang, L.3
Tan, T.4
-
53
-
-
84877777295
-
Deep learning of invariant features via simulated fixations in video
-
W. Zou, S. Zhu, K. Yu, and A. Y. Ng. Deep learning of invariant features via simulated fixations in video. In NIPS, 2012.
-
(2012)
NIPS
-
-
Zou, W.1
Zhu, S.2
Yu, K.3
Ng, A.Y.4
|