메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 1183-1192

Learning compact binary descriptors with unsupervised deep neural networks

Author keywords

[No Author keywords available]

Indexed keywords

BACKPROPAGATION; BINS; COMPUTER VISION; HASH FUNCTIONS; IMAGE MATCHING; NETWORK LAYERS; OBJECT RECOGNITION;

EID: 84986249698     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.133     Document Type: Conference Paper
Times cited : (409)

References (54)
  • 2
    • 38749118638 scopus 로고    scopus 로고
    • Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions
    • 2, 7
    • A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In Proc. FOCS, 2006.
    • (2006) Proc. FOCS
    • Andoni, A.1    Indyk, P.2
  • 3
    • 84959193131 scopus 로고    scopus 로고
    • Bold-binary online learned descriptor for efficient image matching
    • 2, 5
    • V. Balntas, L. Tang, and K. Mikolajczyk. Bold-binary online learned descriptor for efficient image matching. In Proc. CVPR, 2015.
    • (2015) Proc. CVPR
    • Balntas, V.1    Tang, L.2    Mikolajczyk, K.3
  • 5
    • 34247644569 scopus 로고    scopus 로고
    • Automatic panoramic image stitching using invariant features
    • 1
    • M. Brown and D. G. Lowe. Automatic panoramic image stitching using invariant features. Int'l J. Computer Vision, 74 (1): 59-73, 2007.
    • (2007) Int'l J. Computer Vision , vol.74 , Issue.1 , pp. 59-73
    • Brown, M.1    Lowe, D.G.2
  • 6
    • 79952521625 scopus 로고    scopus 로고
    • Brief: Binary robust independent elementary features
    • 1, 2, 5, 6
    • M. Calonder, V. Lepetit, C. Strecha, and P. Fua. Brief: Binary robust independent elementary features. In Proc. ECCV, 2010.
    • (2010) Proc. ECCV
    • Calonder, M.1    Lepetit, V.2    Strecha, C.3    Fua, P.4
  • 7
    • 85072028231 scopus 로고    scopus 로고
    • Return of the devil in the details: Delving deep into convolutional nets
    • 2
    • K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. In Proc. BMVC, 2014.
    • (2014) Proc. BMVC
    • Chatfield, K.1    Simonyan, K.2    Vedaldi, A.3    Zisserman, A.4
  • 8
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • 7, 8
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Proc. CVPR, 2005.
    • (2005) Proc. CVPR
    • Dalal, N.1    Triggs, B.2
  • 9
    • 84901020843 scopus 로고    scopus 로고
    • Receptive fields selection for binary feature description
    • 1, 2, 5
    • B. Fan, Q. Kong, T. Trzcinski, Z. Wang, C. Pan, and P. Fua. Receptive fields selection for binary feature description. IEEE Trans. Image Proc., 23 (6): 2583-2595, 2014.
    • (2014) IEEE Trans. Image Proc , vol.23 , Issue.6 , pp. 2583-2595
    • Fan, B.1    Kong, Q.2    Trzcinski, T.3    Wang, Z.4    Pan, C.5    Fua, P.6
  • 10
    • 0041940256 scopus 로고    scopus 로고
    • Object class recognition by unsupervised scale-invariant learning
    • 1
    • R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised scale-invariant learning. In Proc. CVPR, 2003.
    • (2003) Proc. CVPR
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 11
    • 85067032737 scopus 로고    scopus 로고
    • On feature combination for multiclass object classification
    • 7
    • P. Gehler and S. Nowozin. On feature combination for multiclass object classification. In Proc. ICCV, 2009.
    • (2009) Proc. ICCV
    • Gehler, P.1    Nowozin, S.2
  • 12
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • 2
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proc. CVPR, 2014.
    • (2014) Proc. CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 13
    • 80052874105 scopus 로고    scopus 로고
    • Iterative quantization: A procrustean approach to learning binary codes
    • 4, 7
    • Y. Gong and S. Lazebnik. Iterative quantization: A procrustean approach to learning binary codes. In Proc. CVPR, 2011.
    • (2011) Proc. CVPR
    • Gong, Y.1    Lazebnik, S.2
  • 14
    • 84887601251 scopus 로고    scopus 로고
    • Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval
    • 2, 7
    • Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans. Pattern Anal. Mach. Intell., 35 (12): 2916-2929, 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell , vol.35 , Issue.12 , pp. 2916-2929
    • Gong, Y.1    Lazebnik, S.2    Gordo, A.3    Perronnin, F.4
  • 15
    • 33745855044 scopus 로고    scopus 로고
    • The pyramid match kernel: Discriminative classification with sets of image features
    • 1
    • K. Grauman and T. Darrell. The pyramid match kernel: Discriminative classification with sets of image features. In Proc. ICCV, 2005.
    • (2005) Proc. ICCV
    • Grauman, K.1    Darrell, T.2
  • 16
    • 84887359482 scopus 로고    scopus 로고
    • K-means hashing: An affinitypreserving quantization method for learning binary compact codes
    • 7
    • K. He, F. Wen, and J. Sun. K-means hashing: An affinitypreserving quantization method for learning binary compact codes. In Proc. CVPR, 2013.
    • (2013) Proc. CVPR
    • He, K.1    Wen, F.2    Sun, J.3
  • 20
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • 1, 2
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In Proc. NIPS, 2012.
    • (2012) Proc. NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 21
    • 84959204846 scopus 로고    scopus 로고
    • Simultaneous feature learning and hash coding with deep neural networks
    • 2
    • H. Lai, Y. Pan, Y. Liu, and S. Yan. Simultaneous feature learning and hash coding with deep neural networks. In Proc. CVPR, 2015.
    • (2015) Proc. CVPR
    • Lai, H.1    Pan, Y.2    Liu, Y.3    Yan, S.4
  • 22
    • 84856647875 scopus 로고    scopus 로고
    • Brisk: Binary robust invariant scalable keypoints
    • 1, 2, 5, 6
    • S. Leutenegger, M. Chli, and R. Y. Siegwart. Brisk: Binary robust invariant scalable keypoints. In Proc. ICCV, 2011.
    • (2011) Proc. ICCV
    • Leutenegger, S.1    Chli, M.2    Siegwart, R.Y.3
  • 25
    • 85009870058 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • 2
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In Proc. CVPR, 2014.
    • (2014) Proc. CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 26
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • 1, 6, 7, 8
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. Int'l J. Computer Vision, 60 (2): 91-110, 2004.
    • (2004) Int'l J. Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 27
    • 0034854741 scopus 로고    scopus 로고
    • Indexing based on scale invariant interest points
    • 1
    • K. Mikolajczyk and C. Schmid. Indexing based on scale invariant interest points. In Proc. ICCV, 2001.
    • (2001) Proc. ICCV
    • Mikolajczyk, K.1    Schmid, C.2
  • 29
    • 33845570201 scopus 로고    scopus 로고
    • A visual vocabulary for flower classification
    • 5, 7, 8
    • M.-E. Nilsback and A. Zisserman. A visual vocabulary for flower classification. In Proc. CVPR, 2006.
    • (2006) Proc. CVPR
    • Nilsback, M.-E.1    Zisserman, A.2
  • 30
    • 65249121810 scopus 로고    scopus 로고
    • Automated flower classification over a large number of classes
    • 7, 8
    • M.-E. Nilsback and A. Zisserman. Automated flower classification over a large number of classes. In Proc. ICVGIP, 2008.
    • (2008) Proc. ICVGIP
    • Nilsback, M.-E.1    Zisserman, A.2
  • 31
    • 84911449395 scopus 로고    scopus 로고
    • Learning and transferring mid-level image representations using convolutional neural networks
    • 2
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image representations using convolutional neural networks. In Proc. CVPR, 2014.
    • (2014) Proc. CVPR
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 36
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • 4
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In Proc. ICLR, 2015.
    • (2015) Proc. ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 41
    • 84883382666 scopus 로고    scopus 로고
    • Efficient discriminative projections for compact binary descriptors
    • 2, 5, 6
    • T. Trzcinski and V. Lepetit. Efficient discriminative projections for compact binary descriptors. In Proc. ECCV, 2012.
    • (2012) Proc. ECCV
    • Trzcinski, T.1    Lepetit, V.2
  • 42
    • 0345414114 scopus 로고    scopus 로고
    • Object recognition with informative features and linear classification
    • 1
    • M. Vidal-Naquet and S. Ullman. Object recognition with informative features and linear classification. In Proc. ICCV, 2003.
    • (2003) Proc. ICCV
    • Vidal-Naquet, M.1    Ullman, S.2
  • 43
    • 3042532614 scopus 로고    scopus 로고
    • Robust real-time object detection
    • 1
    • P. Viola and M. Jones. Robust real-time object detection. Int'l J. Computer Vision, 4: 51-52, 2001.
    • (2001) Int'l J. Computer Vision , vol.4 , pp. 51-52
    • Viola, P.1    Jones, M.2
  • 44
  • 45
    • 77955988108 scopus 로고    scopus 로고
    • Semi-supervised hashing for scalable image retrieval
    • 7
    • J. Wang, S. Kumar, and S. Chang. Semi-supervised hashing for scalable image retrieval. In Proc. CVPR, 2010.
    • (2010) Proc. CVPR
    • Wang, J.1    Kumar, S.2    Chang, S.3
  • 47
    • 84949870277 scopus 로고    scopus 로고
    • Supervised hashing for image retreieval via image representation learning
    • 2
    • R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan. Supervised hashing for image retreieval via image representation learning. In Proc. AAAI, 2014.
    • (2014) Proc. AAAI
    • Xia, R.1    Pan, Y.2    Lai, H.3    Liu, C.4    Yan, S.5
  • 48
    • 84902162415 scopus 로고    scopus 로고
    • Osri: A rotationally invariant binary descriptor
    • 1
    • X. Xu, L. Tian, J. Feng, and J. Zhou. Osri: A rotationally invariant binary descriptor. IEEE Trans. Image Proc., 23 (7): 2983-2995, 2014.
    • (2014) IEEE Trans. Image Proc , vol.23 , Issue.7 , pp. 2983-2995
    • Xu, X.1    Tian, L.2    Feng, J.3    Zhou, J.4
  • 50
    • 84873549420 scopus 로고    scopus 로고
    • Ldb: An ultra-fast feature for scalable augmented reality on mobile devices
    • 1, 2, 5
    • X. Yang and K.-T. Cheng. Ldb: An ultra-fast feature for scalable augmented reality on mobile devices. In Proc. ISMAR, 2012.
    • (2012) Proc. ISMAR
    • Yang, X.1    Cheng, K.-T.2
  • 51
    • 84890319957 scopus 로고    scopus 로고
    • Local difference binary for ultrafast and distinctive feature description
    • 2
    • X. Yang and K.-T. Cheng. Local difference binary for ultrafast and distinctive feature description. IEEE Trans. Pattern Anal. Mach. Intell., 36 (1): 188-194, 2014.
    • (2014) IEEE Trans. Pattern Anal. Mach. Intell , vol.36 , Issue.1 , pp. 188-194
    • Yang, X.1    Cheng, K.-T.2
  • 52
    • 33846580425 scopus 로고    scopus 로고
    • Local features and kernels for classification of texture and object categories: A comprehensive study
    • 1
    • J. Zhang, M. Marszaek, S. Lazebnik, and C. Schmid. Local features and kernels for classification of texture and object categories: A comprehensive study. Int'l J. Computer Vision, 73 (2): 213-238, 2007.
    • (2007) Int'l J. Computer Vision , vol.73 , Issue.2 , pp. 213-238
    • Zhang, J.1    Marszaek, M.2    Lazebnik, S.3    Schmid, C.4
  • 53
    • 84904336587 scopus 로고    scopus 로고
    • Usb: Ultrashort binary descriptor for fast visual matching and retrieval
    • 1, 2, 5
    • S. Zhang, Q. Tian, Q. Huang, W. Gao, and Y. Rui. Usb: ultrashort binary descriptor for fast visual matching and retrieval. IEEE Trans. Image Proc., 23 (8): 3671-3683, 2014.
    • (2014) IEEE Trans. Image Proc , vol.23 , Issue.8 , pp. 3671-3683
    • Zhang, S.1    Tian, Q.2    Huang, Q.3    Gao, W.4    Rui, Y.5
  • 54
    • 84904301816 scopus 로고    scopus 로고
    • Coupled binary embedding for large-scale image retrieval
    • 1
    • L. Zheng, S. Wang, and Q. Tian. Coupled binary embedding for large-scale image retrieval. IEEE Trans. Image Proc., 23 (8): 3368-3380, 2014.
    • (2014) IEEE Trans. Image Proc , vol.23 , Issue.8 , pp. 3368-3380
    • Zheng, L.1    Wang, S.2    Tian, Q.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.