-
2
-
-
4344618856
-
6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis
-
Rider MH, Bertrand L, Vertommen D, Michels PA, Rousseau GG and Hue L (2004) 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. Biochem J 381, 561–579.
-
(2004)
Biochem J
, vol.381
, pp. 561-579
-
-
Rider, M.H.1
Bertrand, L.2
Vertommen, D.3
Michels, P.A.4
Rousseau, G.G.5
Hue, L.6
-
3
-
-
0023157214
-
Control of phosphofructokinase by fructose 2,6-bisphosphate in B-lymphocytes and B-chronic lymphocytic leukemia cells
-
Colomer D, Vives-Corrons JL, Pujades A and Bartrons R (1987) Control of phosphofructokinase by fructose 2,6-bisphosphate in B-lymphocytes and B-chronic lymphocytic leukemia cells. Cancer Res 47, 1859–1862.
-
(1987)
Cancer Res
, vol.47
, pp. 1859-1862
-
-
Colomer, D.1
Vives-Corrons, J.L.2
Pujades, A.3
Bartrons, R.4
-
4
-
-
0027479937
-
Fructose 2,6-bisphosphate and the control of glycolysis by growth factors, tumor promoters and oncogenes
-
Hue L and Rousseau GG (1993) Fructose 2,6-bisphosphate and the control of glycolysis by growth factors, tumor promoters and oncogenes. Adv Enzyme Regul 33, 97–110.
-
(1993)
Adv Enzyme Regul
, vol.33
, pp. 97-110
-
-
Hue, L.1
Rousseau, G.G.2
-
5
-
-
0037012571
-
Insulin induces PFKFB3 gene expression in HT29 human colon adenocarcinoma cells
-
Riera L, Manzano A, Navarro-Sabate A, Perales JC and Bartrons R (2002) Insulin induces PFKFB3 gene expression in HT29 human colon adenocarcinoma cells. Biochim Biophys Acta 1589, 89–92.
-
(2002)
Biochim Biophys Acta
, vol.1589
, pp. 89-92
-
-
Riera, L.1
Manzano, A.2
Navarro-Sabate, A.3
Perales, J.C.4
Bartrons, R.5
-
6
-
-
33746037631
-
PFKFB3 gene silencing decreases glycolysis, induces cell-cycle delay and inhibits anchorage-independent growth in HeLa cells
-
Calvo MN, Bartrons R, Castano E, Perales JC, Navarro-Sabate A and Manzano A (2006) PFKFB3 gene silencing decreases glycolysis, induces cell-cycle delay and inhibits anchorage-independent growth in HeLa cells. FEBS Lett 580, 3308–3314.
-
(2006)
FEBS Lett
, vol.580
, pp. 3308-3314
-
-
Calvo, M.N.1
Bartrons, R.2
Castano, E.3
Perales, J.C.4
Navarro-Sabate, A.5
Manzano, A.6
-
7
-
-
0035146957
-
PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate
-
Okar DA, Manzano A, Navarro-Sabate A, Riera L, Bartrons R and Lange AJ (2001) PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends Biochem Sci 26, 30–35.
-
(2001)
Trends Biochem Sci
, vol.26
, pp. 30-35
-
-
Okar, D.A.1
Manzano, A.2
Navarro-Sabate, A.3
Riera, L.4
Bartrons, R.5
Lange, A.J.6
-
8
-
-
0033971932
-
6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase expression in rat brain during development
-
Goren N, Manzano A, Riera L, Ambrosio S, Ventura F and Bartrons R (2000) 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase expression in rat brain during development. Brain Res Mol Brain Res 75, 138–142.
-
(2000)
Brain Res Mol Brain Res
, vol.75
, pp. 138-142
-
-
Goren, N.1
Manzano, A.2
Riera, L.3
Ambrosio, S.4
Ventura, F.5
Bartrons, R.6
-
9
-
-
33747487110
-
Ras transformation requires metabolic control by 6-phosphofructo-2-kinase
-
Telang S, Yalcin A, Clem AL, Bucala R, Lane AN, Eaton JW and Chesney J (2006) Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. Oncogene 25, 7225–7234.
-
(2006)
Oncogene
, vol.25
, pp. 7225-7234
-
-
Telang, S.1
Yalcin, A.2
Clem, A.L.3
Bucala, R.4
Lane, A.N.5
Eaton, J.W.6
Chesney, J.7
-
10
-
-
0031266136
-
Human placental fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase: its isozymic form, expression and characterization
-
Sakakibara R, Uemura M, Hirata T, Okamura N and Kato M (1997) Human placental fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase: its isozymic form, expression and characterization. Biosci Biotechnol Biochem 61, 1949–1952.
-
(1997)
Biosci Biotechnol Biochem
, vol.61
, pp. 1949-1952
-
-
Sakakibara, R.1
Uemura, M.2
Hirata, T.3
Okamura, N.4
Kato, M.5
-
11
-
-
0032461972
-
Molecular cloning, expression, and chromosomal localization of a ubiquitously expressed human 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase gene (PFKFB3)
-
Manzano A, Rosa JL, Ventura F, Perez JX, Nadal M, Estivill X, Ambrosio S, Gil J and Bartrons R (1998) Molecular cloning, expression, and chromosomal localization of a ubiquitously expressed human 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase gene (PFKFB3). Cytogenet Cell Genet 83, 214–217.
-
(1998)
Cytogenet Cell Genet
, vol.83
, pp. 214-217
-
-
Manzano, A.1
Rosa, J.L.2
Ventura, F.3
Perez, J.X.4
Nadal, M.5
Estivill, X.6
Ambrosio, S.7
Gil, J.8
Bartrons, R.9
-
12
-
-
0035819567
-
The human ubiquitous 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene (PFKFB3): promoter characterization and genomic structure
-
Navarro-Sabate A, Manzano A, Riera L, Rosa JL, Ventura F and Bartrons R (2001) The human ubiquitous 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene (PFKFB3): promoter characterization and genomic structure. Gene 264, 131–138.
-
(2001)
Gene
, vol.264
, pp. 131-138
-
-
Navarro-Sabate, A.1
Manzano, A.2
Riera, L.3
Rosa, J.L.4
Ventura, F.5
Bartrons, R.6
-
13
-
-
35448982216
-
Hypoxia, glucose metabolism and the Warburg's effect
-
Bartrons R and Caro J (2007) Hypoxia, glucose metabolism and the Warburg's effect. J Bioenerg Biomembr 39, 223–229.
-
(2007)
J Bioenerg Biomembr
, vol.39
, pp. 223-229
-
-
Bartrons, R.1
Caro, J.2
-
14
-
-
0037108709
-
High expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (iPFK-2; PFKFB3) in human cancers
-
Atsumi T, Chesney J, Metz C, Leng L, Donnelly S, Makita Z, Mitchell R and Bucala R (2002) High expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (iPFK-2; PFKFB3) in human cancers. Cancer Res 62, 5881–5887.
-
(2002)
Cancer Res
, vol.62
, pp. 5881-5887
-
-
Atsumi, T.1
Chesney, J.2
Metz, C.3
Leng, L.4
Donnelly, S.5
Makita, Z.6
Mitchell, R.7
Bucala, R.8
-
15
-
-
33747505788
-
6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase and tumor cell glycolysis
-
Chesney J (2006) 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase and tumor cell glycolysis. Curr Opin Clin Nutr Metab Care 9, 535–539.
-
(2006)
Curr Opin Clin Nutr Metab Care
, vol.9
, pp. 535-539
-
-
Chesney, J.1
-
16
-
-
84985986546
-
PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3)
-
Novellasdemunt L, Navarro-Sabate A, Manzano A, Rodríguez-García A and Bartrons R (2013) PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3). Atlas Genet Cytogenet Oncol Haematol 17, 609–622.
-
(2013)
Atlas Genet Cytogenet Oncol Haematol
, vol.17
, pp. 609-622
-
-
Novellasdemunt, L.1
Navarro-Sabate, A.2
Manzano, A.3
Rodríguez-García, A.4
Bartrons, R.5
-
17
-
-
19944399717
-
6-Phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia
-
Obach M, Navarro-Sabate A, Caro J, Kong X, Duran J, Gomez M, Perales JC, Ventura F, Rosa JL and Bartrons R (2004) 6-Phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia. J Biol Chem 279, 53562–53570.
-
(2004)
J Biol Chem
, vol.279
, pp. 53562-53570
-
-
Obach, M.1
Navarro-Sabate, A.2
Caro, J.3
Kong, X.4
Duran, J.5
Gomez, M.6
Perales, J.C.7
Ventura, F.8
Rosa, J.L.9
Bartrons, R.10
-
18
-
-
25444464113
-
Overexpression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4 in the human breast and colon malignant tumors
-
Minchenko OH, Ochiai A, Opentanova IL, Ogura T, Minchenko DO, Caro J, Komisarenko SV and Esumi H (2005) Overexpression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4 in the human breast and colon malignant tumors. Biochimie 87, 1005–1010.
-
(2005)
Biochimie
, vol.87
, pp. 1005-1010
-
-
Minchenko, O.H.1
Ochiai, A.2
Opentanova, I.L.3
Ogura, T.4
Minchenko, D.O.5
Caro, J.6
Komisarenko, S.V.7
Esumi, H.8
-
19
-
-
84881119066
-
Role of PFKFB3-driven glycolysis in vessel sprouting
-
De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, Quaegebeur A, Ghesquiere B, Cauwenberghs S, Eelen G et al. (2013) Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154, 651–663.
-
(2013)
Cell
, vol.154
, pp. 651-663
-
-
De Bock, K.1
Georgiadou, M.2
Schoors, S.3
Kuchnio, A.4
Wong, B.W.5
Cantelmo, A.R.6
Quaegebeur, A.7
Ghesquiere, B.8
Cauwenberghs, S.9
Eelen, G.10
-
20
-
-
38349183620
-
Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth
-
Clem B, Telang S, Clem A, Yalcin A, Meier J, Simmons A, Rasku MA, Arumugam S, Dean WL, Eaton J et al. (2008) Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther 7, 110–120.
-
(2008)
Mol Cancer Ther
, vol.7
, pp. 110-120
-
-
Clem, B.1
Telang, S.2
Clem, A.3
Yalcin, A.4
Meier, J.5
Simmons, A.6
Rasku, M.A.7
Arumugam, S.8
Dean, W.L.9
Eaton, J.10
-
21
-
-
84942990367
-
AMPK and PFKFB3 mediate glycolysis and survival in response to mitophagy during mitotic arrest
-
Domenech E, Maestre C, Esteban-Martinez L, Partida D, Pascual R, Fernandez-Miranda G, Seco E, Campos-Olivas R, Perez M, Megias D et al. (2015) AMPK and PFKFB3 mediate glycolysis and survival in response to mitophagy during mitotic arrest. Nat Cell Biol 17, 1304–1316.
-
(2015)
Nat Cell Biol
, vol.17
, pp. 1304-1316
-
-
Domenech, E.1
Maestre, C.2
Esteban-Martinez, L.3
Partida, D.4
Pascual, R.5
Fernandez-Miranda, G.6
Seco, E.7
Campos-Olivas, R.8
Perez, M.9
Megias, D.10
-
22
-
-
33745918951
-
TIGAR, a p53-inducible regulator of glycolysis and apoptosis
-
Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E and Vousden KH (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126, 107–120.
-
(2006)
Cell
, vol.126
, pp. 107-120
-
-
Bensaad, K.1
Tsuruta, A.2
Selak, M.A.3
Vidal, M.N.4
Nakano, K.5
Bartrons, R.6
Gottlieb, E.7
Vousden, K.H.8
-
23
-
-
84896836929
-
Identification of TP53-induced glycolysis and apoptosis regulator (TIGAR) as the phosphoglycolate-independent 2,3-bisphosphoglycerate phosphatase
-
Gerin I, Noel G, Bolsee J, Haumont O, Van Schaftingen E and Bommer GT (2014) Identification of TP53-induced glycolysis and apoptosis regulator (TIGAR) as the phosphoglycolate-independent 2,3-bisphosphoglycerate phosphatase. Biochem J 458, 439–448.
-
(2014)
Biochem J
, vol.458
, pp. 439-448
-
-
Gerin, I.1
Noel, G.2
Bolsee, J.3
Haumont, O.4
Van Schaftingen, E.5
Bommer, G.T.6
-
24
-
-
84904973235
-
TIGAR, TIGAR, burning bright
-
Lee P, Vousden KH and Cheung EC (2014) TIGAR, TIGAR, burning bright. Cancer Metab 2, 1.
-
(2014)
Cancer Metab
, vol.2
, pp. 1
-
-
Lee, P.1
Vousden, K.H.2
Cheung, E.C.3
-
25
-
-
84855991449
-
Regulatory role of p53 in cancer metabolism via SCO2 and TIGAR in human breast cancer
-
Won KY, Lim SJ, Kim GY, Kim YW, Han SA, Song JY and Lee DK (2012) Regulatory role of p53 in cancer metabolism via SCO2 and TIGAR in human breast cancer. Hum Pathol 43, 221–228.
-
(2012)
Hum Pathol
, vol.43
, pp. 221-228
-
-
Won, K.Y.1
Lim, S.J.2
Kim, G.Y.3
Kim, Y.W.4
Han, S.A.5
Song, J.Y.6
Lee, D.K.7
-
26
-
-
84866910992
-
Tp53-induced glycolysis and apoptosis regulator (TIGAR) protects glioma cells from starvation-induced cell death by up-regulating respiration and improving cellular redox homeostasis
-
Wanka C, Steinbach JP and Rieger J (2012) Tp53-induced glycolysis and apoptosis regulator (TIGAR) protects glioma cells from starvation-induced cell death by up-regulating respiration and improving cellular redox homeostasis. J Biol Chem 287, 33436–33446.
-
(2012)
J Biol Chem
, vol.287
, pp. 33436-33446
-
-
Wanka, C.1
Steinbach, J.P.2
Rieger, J.3
-
27
-
-
84878981053
-
TIGAR is required for efficient intestinal regeneration and tumorigenesis
-
Cheung EC, Athineos D, Lee P, Ridgway RA, Lambie W, Nixon C, Strathdee D, Blyth K, Sansom OJ and Vousden KH (2013) TIGAR is required for efficient intestinal regeneration and tumorigenesis. Dev Cell 25, 463–477.
-
(2013)
Dev Cell
, vol.25
, pp. 463-477
-
-
Cheung, E.C.1
Athineos, D.2
Lee, P.3
Ridgway, R.A.4
Lambie, W.5
Nixon, C.6
Strathdee, D.7
Blyth, K.8
Sansom, O.J.9
Vousden, K.H.10
-
28
-
-
84985957865
-
C12orf5 (chromosome 12 open reading frame 5)
-
Simon H, Rodríguez-García A, Navarro-Sabate A, Fontova P, Bartrons R and Manzano A (2014) C12orf5 (chromosome 12 open reading frame 5). Atlas Genet Cytogenet Oncol Haematol 18, 500–510.
-
(2014)
Atlas Genet Cytogenet Oncol Haematol
, vol.18
, pp. 500-510
-
-
Simon, H.1
Rodríguez-García, A.2
Navarro-Sabate, A.3
Fontova, P.4
Bartrons, R.5
Manzano, A.6
-
29
-
-
84955447125
-
Identification of the TP53-induced glycolysis and apoptosis regulator in various stages of colorectal cancer patients
-
Al-Khayal K, Abdulla M, Al-Obeed O, Al Kattan W, Zubaidi A, Vaali-Mohammed MA, Alsheikh A and Ahmad R (2016) Identification of the TP53-induced glycolysis and apoptosis regulator in various stages of colorectal cancer patients. Oncol Rep 35, 1281–1286.
-
(2016)
Oncol Rep
, vol.35
, pp. 1281-1286
-
-
Al-Khayal, K.1
Abdulla, M.2
Al-Obeed, O.3
Al Kattan, W.4
Zubaidi, A.5
Vaali-Mohammed, M.A.6
Alsheikh, A.7
Ahmad, R.8
-
30
-
-
80655124584
-
TP53 induced glycolysis and apoptosis regulator (TIGAR) knockdown results in radiosensitization of glioma cells
-
Pena-Rico MA, Calvo-Vidal MN, Villalonga-Planells R, Martinez-Soler F, Gimenez-Bonafe P, Navarro-Sabate A, Tortosa A, Bartrons R and Manzano A (2011) TP53 induced glycolysis and apoptosis regulator (TIGAR) knockdown results in radiosensitization of glioma cells. Radiother Oncol 101, 132–139.
-
(2011)
Radiother Oncol
, vol.101
, pp. 132-139
-
-
Pena-Rico, M.A.1
Calvo-Vidal, M.N.2
Villalonga-Planells, R.3
Martinez-Soler, F.4
Gimenez-Bonafe, P.5
Navarro-Sabate, A.6
Tortosa, A.7
Bartrons, R.8
Manzano, A.9
-
31
-
-
0020438908
-
A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate
-
Van Schaftingen E, Lederer B, Bartrons R and Hers HG (1981) A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate. Eur J Biochem 129, 191–195.
-
(1981)
Eur J Biochem
, vol.129
, pp. 191-195
-
-
Van Schaftingen, E.1
Lederer, B.2
Bartrons, R.3
Hers, H.G.4
-
32
-
-
85069238538
-
Inhibition of 6-phosphofructo-2-kinase (PFKFB3) induces autophagy as a survival mechanism
-
Klarer AC, O'Neal J, Imbert-Fernandez Y, Clem A, Ellis SR, Clark J, Clem B, Chesney J and Telang S (2014) Inhibition of 6-phosphofructo-2-kinase (PFKFB3) induces autophagy as a survival mechanism. Cancer Metab 2, 2.
-
(2014)
Cancer Metab
, vol.2
, pp. 2
-
-
Klarer, A.C.1
O'Neal, J.2
Imbert-Fernandez, Y.3
Clem, A.4
Ellis, S.R.5
Clark, J.6
Clem, B.7
Chesney, J.8
Telang, S.9
-
33
-
-
0141688316
-
Glucose deprivation induces mitochondrial dysfunction and oxidative stress in PC12 cell line
-
Liu Y, Song XD, Liu W, Zhang TY and Zuo J (2003) Glucose deprivation induces mitochondrial dysfunction and oxidative stress in PC12 cell line. J Cell Mol Med 7, 49–56.
-
(2003)
J Cell Mol Med
, vol.7
, pp. 49-56
-
-
Liu, Y.1
Song, X.D.2
Liu, W.3
Zhang, T.Y.4
Zuo, J.5
-
34
-
-
68749093087
-
Pfkfb3 is transcriptionally upregulated in diabetic mouse liver through proliferative signals
-
Duran J, Obach M, Navarro-Sabate A, Manzano A, Gomez M, Rosa JL, Ventura F, Perales JC and Bartrons R (2009) Pfkfb3 is transcriptionally upregulated in diabetic mouse liver through proliferative signals. FEBS J 276, 4555–4568.
-
(2009)
FEBS J
, vol.276
, pp. 4555-4568
-
-
Duran, J.1
Obach, M.2
Navarro-Sabate, A.3
Manzano, A.4
Gomez, M.5
Rosa, J.L.6
Ventura, F.7
Perales, J.C.8
Bartrons, R.9
-
35
-
-
84944937943
-
Kinome screen identifies PFKFB3 and glucose metabolism as important regulators of the insulin/insulin-like growth factor (IGF)-1 signaling pathway
-
Trefely S, Khoo PS, Krycer JR, Chaudhuri R, Fazakerley DJ, Parker BL, Sultani G, Lee J, Stephan JP, Torres E et al. (2015) Kinome screen identifies PFKFB3 and glucose metabolism as important regulators of the insulin/insulin-like growth factor (IGF)-1 signaling pathway. J Biol Chem 290, 25834–25846.
-
(2015)
J Biol Chem
, vol.290
, pp. 25834-25846
-
-
Trefely, S.1
Khoo, P.S.2
Krycer, J.R.3
Chaudhuri, R.4
Fazakerley, D.J.5
Parker, B.L.6
Sultani, G.7
Lee, J.8
Stephan, J.P.9
Torres, E.10
-
36
-
-
0038743128
-
Redox stress regulates cell proliferation and apoptosis of human hepatoma through Akt protein phosphorylation
-
Dong-Yun S, Yu-Ru D, Shan-Lin L, Ya-Dong Z and Lian W (2003) Redox stress regulates cell proliferation and apoptosis of human hepatoma through Akt protein phosphorylation. FEBS Lett 542, 60–64.
-
(2003)
FEBS Lett
, vol.542
, pp. 60-64
-
-
Dong-Yun, S.1
Yu-Ru, D.2
Shan-Lin, L.3
Ya-Dong, Z.4
Lian, W.5
-
37
-
-
84893746086
-
Site-specific activation of AKT protects cells from death induced by glucose deprivation
-
Gao M, Liang J, Lu Y, Guo H, German P, Bai S, Jonasch E, Yang X, Mills GB and Ding Z (2014) Site-specific activation of AKT protects cells from death induced by glucose deprivation. Oncogene 33, 745–755.
-
(2014)
Oncogene
, vol.33
, pp. 745-755
-
-
Gao, M.1
Liang, J.2
Lu, Y.3
Guo, H.4
German, P.5
Bai, S.6
Jonasch, E.7
Yang, X.8
Mills, G.B.9
Ding, Z.10
-
38
-
-
12444279265
-
On the origin of cancer cells
-
Warburg O (1956) On the origin of cancer cells. Science 123, 309–314.
-
(1956)
Science
, vol.123
, pp. 309-314
-
-
Warburg, O.1
-
39
-
-
70350575440
-
Modulation of intracellular ROS levels by TIGAR controls autophagy
-
Bensaad K, Cheung EC and Vousden KH (2009) Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO J 28, 3015–3026.
-
(2009)
EMBO J
, vol.28
, pp. 3015-3026
-
-
Bensaad, K.1
Cheung, E.C.2
Vousden, K.H.3
-
40
-
-
84946190342
-
TIGAR regulates DNA damage and repair through pentosephosphate pathway and Cdk5-ATM pathway
-
Yu HP, Xie JM, Li B, Sun YH, Gao QG, Ding ZH, Wu HR and Qin ZH (2015) TIGAR regulates DNA damage and repair through pentosephosphate pathway and Cdk5-ATM pathway. Sci Rep 5, 9853.
-
(2015)
Sci Rep
, vol.5
, pp. 9853
-
-
Yu, H.P.1
Xie, J.M.2
Li, B.3
Sun, Y.H.4
Gao, Q.G.5
Ding, Z.H.6
Wu, H.R.7
Qin, Z.H.8
-
41
-
-
67349125439
-
Interplay between MEK and PI3 kinase signaling regulates the subcellular localization of protein kinases ERK1/2 and Akt upon oxidative stress
-
Kodiha M, Banski P and Stochaj U (2009) Interplay between MEK and PI3 kinase signaling regulates the subcellular localization of protein kinases ERK1/2 and Akt upon oxidative stress. FEBS Lett 583, 1987–1993.
-
(2009)
FEBS Lett
, vol.583
, pp. 1987-1993
-
-
Kodiha, M.1
Banski, P.2
Stochaj, U.3
-
42
-
-
84859215796
-
Systemic elevation of PTEN induces a tumor-suppressive metabolic state
-
Garcia-Cao I, Song MS, Hobbs RM, Laurent G, Giorgi C, de Boer VC, Anastasiou D, Ito K, Sasaki AT, Rameh L et al. (2012) Systemic elevation of PTEN induces a tumor-suppressive metabolic state. Cell 149, 49–62.
-
(2012)
Cell
, vol.149
, pp. 49-62
-
-
Garcia-Cao, I.1
Song, M.S.2
Hobbs, R.M.3
Laurent, G.4
Giorgi, C.5
de Boer, V.C.6
Anastasiou, D.7
Ito, K.8
Sasaki, A.T.9
Rameh, L.10
-
43
-
-
84940055374
-
Signaling through the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) axis is responsible for aerobic glycolysis mediated by glucose transporter in epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma
-
Makinoshima H, Takita M, Saruwatari K, Umemura S, Obata Y, Ishii G, Matsumoto S, Sugiyama E, Ochiai A, Abe R et al. (2015) Signaling through the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) axis is responsible for aerobic glycolysis mediated by glucose transporter in epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma. J Biol Chem 290, 17495–17504.
-
(2015)
J Biol Chem
, vol.290
, pp. 17495-17504
-
-
Makinoshima, H.1
Takita, M.2
Saruwatari, K.3
Umemura, S.4
Obata, Y.5
Ishii, G.6
Matsumoto, S.7
Sugiyama, E.8
Ochiai, A.9
Abe, R.10
|