-
1
-
-
84908012083
-
Enzyme-responsive nanomaterials for controlled drug delivery
-
[1] Hu, Q., Katti, P.S., Gu, Z., Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale 6 (2014), 12273–12286.
-
(2014)
Nanoscale
, vol.6
, pp. 12273-12286
-
-
Hu, Q.1
Katti, P.S.2
Gu, Z.3
-
2
-
-
84919921268
-
Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability
-
[2] Khadka, P., Ro, J., Kim, H., et al. Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci 9 (2014), 304–316.
-
(2014)
Asian J Pharm Sci
, vol.9
, pp. 304-316
-
-
Khadka, P.1
Ro, J.2
Kim, H.3
-
3
-
-
84911425738
-
Liposomes as sterile preparations and limitations of sterilisation techniques in liposomal manufacturing
-
[3] Toh, M.R., Chiu, G.N.C., Liposomes as sterile preparations and limitations of sterilisation techniques in liposomal manufacturing. Asian J Pharm Sci 8 (2013), 88–95.
-
(2013)
Asian J Pharm Sci
, vol.8
, pp. 88-95
-
-
Toh, M.R.1
Chiu, G.N.C.2
-
4
-
-
84861233382
-
Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications
-
[4] Fleige, E., Quadir, M.A., Haag, R., Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev 64 (2012), 866–884.
-
(2012)
Adv Drug Deliv Rev
, vol.64
, pp. 866-884
-
-
Fleige, E.1
Quadir, M.A.2
Haag, R.3
-
5
-
-
84894444652
-
pH-sensitive polymeric micelles triggered drug release for extracellular and intracellular drug targeting delivery
-
[5] Liu, Y., Wang, W., Yang, J., et al. pH-sensitive polymeric micelles triggered drug release for extracellular and intracellular drug targeting delivery. Asian J Pharm Sci 8 (2013), 159–167.
-
(2013)
Asian J Pharm Sci
, vol.8
, pp. 159-167
-
-
Liu, Y.1
Wang, W.2
Yang, J.3
-
6
-
-
84862661182
-
Designing switchable nanosystems for medical application
-
[6] Lehner, R., Wang, X., Wolf, M., et al. Designing switchable nanosystems for medical application. J Control Release 161 (2012), 307–316.
-
(2012)
J Control Release
, vol.161
, pp. 307-316
-
-
Lehner, R.1
Wang, X.2
Wolf, M.3
-
7
-
-
84943558849
-
Nanoscale theranostics for physical stimulus-responsive cancer therapies
-
[7] Chen, Q., Ke, H., Dai, Z., et al. Nanoscale theranostics for physical stimulus-responsive cancer therapies. Biomaterials 73 (2015), 214–230.
-
(2015)
Biomaterials
, vol.73
, pp. 214-230
-
-
Chen, Q.1
Ke, H.2
Dai, Z.3
-
8
-
-
0032540701
-
Photodynamic therapy
-
[8] Dougherty, T.J., Gomer, C.J., Henderson, B.W., et al. Photodynamic therapy. J Natl Cancer Inst 90 (1998), 889–905.
-
(1998)
J Natl Cancer Inst
, vol.90
, pp. 889-905
-
-
Dougherty, T.J.1
Gomer, C.J.2
Henderson, B.W.3
-
9
-
-
84875936005
-
Photodynamic nanomedicine in the treatment of solid tumors: perspectives and challenges
-
[9] Master, A., Livingston, M., Sen Gupta, A., Photodynamic nanomedicine in the treatment of solid tumors: perspectives and challenges. J Control Release 168 (2013), 88–102.
-
(2013)
J Control Release
, vol.168
, pp. 88-102
-
-
Master, A.1
Livingston, M.2
Sen Gupta, A.3
-
10
-
-
79953033890
-
Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents
-
[10] Lovell, J.F., Jin, C.S., Huynh, E., et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat Mater 10 (2011), 324–332.
-
(2011)
Nat Mater
, vol.10
, pp. 324-332
-
-
Lovell, J.F.1
Jin, C.S.2
Huynh, E.3
-
11
-
-
84906074926
-
Targeting-triggered porphysome nanostructure disruption for activatable photodynamic therapy
-
[11] Jin, C.S., Cui, L., Wang, F., et al. Targeting-triggered porphysome nanostructure disruption for activatable photodynamic therapy. Adv Healthc Mater 3 (2014), 1240–1249.
-
(2014)
Adv Healthc Mater
, vol.3
, pp. 1240-1249
-
-
Jin, C.S.1
Cui, L.2
Wang, F.3
-
12
-
-
84881351706
-
The endocytosis and intracellular fate of nanomedicines: implication for rational design
-
[12] Kou, L., Sun, J., Zhai, Y., et al. The endocytosis and intracellular fate of nanomedicines: implication for rational design. Asian J Pharm Sci 8 (2013), 1–10.
-
(2013)
Asian J Pharm Sci
, vol.8
, pp. 1-10
-
-
Kou, L.1
Sun, J.2
Zhai, Y.3
-
13
-
-
84906948225
-
Selective photosensitizer delivery into plasma membrane for effective photodynamic therapy
-
[13] Kim, J., Santos, O.A., Park, J.H., Selective photosensitizer delivery into plasma membrane for effective photodynamic therapy. J Control Release 191 (2014), 98–104.
-
(2014)
J Control Release
, vol.191
, pp. 98-104
-
-
Kim, J.1
Santos, O.A.2
Park, J.H.3
-
14
-
-
79958189858
-
Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance
-
[14] Shapira, A., Livney, Y.D., Broxterman, H.J., et al. Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance. Drug Resist Updat 14 (2011), 150–163.
-
(2011)
Drug Resist Updat
, vol.14
, pp. 150-163
-
-
Shapira, A.1
Livney, Y.D.2
Broxterman, H.J.3
-
15
-
-
84888865277
-
Carbon nanotubes for delivery of small molecule drugs
-
[15] Wong, B.S., Yoong, S.L., Jagusiak, A., et al. Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev 65 (2013), 1964–2015.
-
(2013)
Adv Drug Deliv Rev
, vol.65
, pp. 1964-2015
-
-
Wong, B.S.1
Yoong, S.L.2
Jagusiak, A.3
-
16
-
-
84956864866
-
Actively targeting d-alpha-tocopheryl polyethylene glycol 1000 succinate-poly(lactic acid) nanoparticles as vesicles for chemo-photodynamic combination therapy of doxorubicin-resistant breast cancer
-
[16] Jiang, D., Gao, X., Kang, T., et al. Actively targeting d-alpha-tocopheryl polyethylene glycol 1000 succinate-poly(lactic acid) nanoparticles as vesicles for chemo-photodynamic combination therapy of doxorubicin-resistant breast cancer. Nanoscale 8 (2016), 3100–3118.
-
(2016)
Nanoscale
, vol.8
, pp. 3100-3118
-
-
Jiang, D.1
Gao, X.2
Kang, T.3
-
17
-
-
0022704971
-
Tumour microcirculation as a target for hyperthermia
-
[17] Reinhold, H.S., Endrich, B., Tumour microcirculation as a target for hyperthermia. Int J Hyperthermia 2 (1986), 111–137.
-
(1986)
Int J Hyperthermia
, vol.2
, pp. 111-137
-
-
Reinhold, H.S.1
Endrich, B.2
-
18
-
-
84952870598
-
Near-infrared light-responsive nanomaterials for cancer theranostics
-
[18] Kim, H., Chung, K., Lee, S., et al. Near-infrared light-responsive nanomaterials for cancer theranostics. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8 (2016), 1022–1098.
-
(2016)
Wiley Interdiscip Rev Nanomed Nanobiotechnol
, vol.8
, pp. 1022-1098
-
-
Kim, H.1
Chung, K.2
Lee, S.3
-
19
-
-
77249098786
-
Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery
-
[19] Park, J.H., Von Maltzahn, G., Ong, L.L., et al. Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery. Adv Mater 22 (2010), 880–885.
-
(2010)
Adv Mater
, vol.22
, pp. 880-885
-
-
Park, J.H.1
Von Maltzahn, G.2
Ong, L.L.3
-
20
-
-
84984805175
-
Antibacterial applications of graphene-based nanomaterials: recent achievements and challenges
-
[20] Ji, H., Sun, H., Qu, X., Antibacterial applications of graphene-based nanomaterials: recent achievements and challenges. Adv Drug Deliv Rev 25 (2016), 857–861.
-
(2016)
Adv Drug Deliv Rev
, vol.25
, pp. 857-861
-
-
Ji, H.1
Sun, H.2
Qu, X.3
-
21
-
-
84955262054
-
Hybrid graphene/Au activatable theranostic agent for multimodalities imaging guided enhanced photothermal therapy
-
[21] Gao, S., Zhang, L., Wang, G., et al. Hybrid graphene/Au activatable theranostic agent for multimodalities imaging guided enhanced photothermal therapy. Biomaterials 79 (2015), 28–54.
-
(2015)
Biomaterials
, vol.79
, pp. 28-54
-
-
Gao, S.1
Zhang, L.2
Wang, G.3
-
22
-
-
0033653747
-
and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals
-
[22] El-Sayed, S.L., Shape, A.M., and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19 (2000), 409–453.
-
(2000)
Int Rev Phys Chem
, vol.19
, pp. 409-453
-
-
El-Sayed, S.L.1
Shape, A.M.2
-
23
-
-
84873353886
-
Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells
-
[23] Zha, Z., Yue, X., Ren, Q., et al. Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Adv Mater 25 (2013), 777–782.
-
(2013)
Adv Mater
, vol.25
, pp. 777-782
-
-
Zha, Z.1
Yue, X.2
Ren, Q.3
-
24
-
-
80051681891
-
Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells
-
[24] Tian, Q., Tang, M., Sun, Y., et al. Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells. AIDS Care 23 (2011), 3542–3547.
-
(2011)
AIDS Care
, vol.23
, pp. 3542-3547
-
-
Tian, Q.1
Tang, M.2
Sun, Y.3
-
25
-
-
84954025364
-
Tumor therapy: NIR-laser-switched in vivo smart nanocapsules for synergic photothermal and chemotherapy of tumors
-
[25] Meng, Z., Wei, F., Wang, R., et al. Tumor therapy: NIR-laser-switched in vivo smart nanocapsules for synergic photothermal and chemotherapy of tumors. Adv Mater 28:2 (2016), 245–253.
-
(2016)
Adv Mater
, vol.28
, Issue.2
, pp. 245-253
-
-
Meng, Z.1
Wei, F.2
Wang, R.3
-
26
-
-
84984826279
-
(64)Cu-Doped PdCu@Au Tripods: a multifunctional nanomaterial for positron emission tomography and image-guided photothermal cancer treatment
-
[26] Pang, B., Zhao, Y., Luehmann, H., et al. (64)Cu-Doped PdCu@Au Tripods: a multifunctional nanomaterial for positron emission tomography and image-guided photothermal cancer treatment. Angew Chem Int Ed Engl 1 (1962), 246–264.
-
(1962)
Angew Chem Int Ed Engl
, vol.1
, pp. 246-264
-
-
Pang, B.1
Zhao, Y.2
Luehmann, H.3
-
27
-
-
84906785933
-
Stimuli-sensitive nanopreparations for combination cancer therapy
-
[27] Jhaveri, A., Deshpande, P., Torchilin, V., Stimuli-sensitive nanopreparations for combination cancer therapy. J Control Release 190 (2014), 352–370.
-
(2014)
J Control Release
, vol.190
, pp. 352-370
-
-
Jhaveri, A.1
Deshpande, P.2
Torchilin, V.3
-
28
-
-
79959912505
-
Near-infrared light induced invivo photodynamic therapy of cancer based on upconversion nanoparticles
-
[28] Wang, C., Tao, H., Cheng, L., et al. Near-infrared light induced invivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials 32 (2011), 6145–6154.
-
(2011)
Biomaterials
, vol.32
, pp. 6145-6154
-
-
Wang, C.1
Tao, H.2
Cheng, L.3
-
29
-
-
84984674720
-
Near-Infrared light triggered ROS-activated theranostic platform based on Ce6-CPT-UCNPs for simultaneous fluorescence imaging and chemo-photodynamic combined therapy
-
[29] Caixia, Y., Chunlei, Z., Gabriel, A., et al. Near-Infrared light triggered ROS-activated theranostic platform based on Ce6-CPT-UCNPs for simultaneous fluorescence imaging and chemo-photodynamic combined therapy. Theranostics 6 (2016), 456–469.
-
(2016)
Theranostics
, vol.6
, pp. 456-469
-
-
Caixia, Y.1
Chunlei, Z.2
Gabriel, A.3
-
30
-
-
78650437742
-
Recent advances in conjugated polyelectrolytes for emerging optoelectronic applications
-
[30] Duarte, A., Pu, K.Y., Liu, B., et al. Recent advances in conjugated polyelectrolytes for emerging optoelectronic applications. Chem Mater 23 (2010), 501–515.
-
(2010)
Chem Mater
, vol.23
, pp. 501-515
-
-
Duarte, A.1
Pu, K.Y.2
Liu, B.3
-
31
-
-
84874023196
-
Conjugated polymer-coated bacteria for multimodal intracellular and extracellular anticancer activity
-
[31] Zhu, C., Yang, Q., Lv, F., et al. Conjugated polymer-coated bacteria for multimodal intracellular and extracellular anticancer activity. Adv Mater 25 (2013), 1203–1208.
-
(2013)
Adv Mater
, vol.25
, pp. 1203-1208
-
-
Zhu, C.1
Yang, Q.2
Lv, F.3
-
32
-
-
84903721658
-
Conjugated-polyelectrolyte-based polyprodrug: targeted and image-guided photodynamic and chemotherapy with on-demand drug release upon irradiation with a single light source
-
[32] Yuan, Y., Liu, J., Liu, B., Conjugated-polyelectrolyte-based polyprodrug: targeted and image-guided photodynamic and chemotherapy with on-demand drug release upon irradiation with a single light source. Angew Chem Int Ed Engl 53 (2014), 7163–7168.
-
(2014)
Angew Chem Int Ed Engl
, vol.53
, pp. 7163-7168
-
-
Yuan, Y.1
Liu, J.2
Liu, B.3
-
33
-
-
84906787631
-
Theranostic nanoparticles for future personalized medicine
-
[33] Ryu, J.H., Lee, S., Son, S., et al. Theranostic nanoparticles for future personalized medicine. J Control Release 190 (2014), 477–484.
-
(2014)
J Control Release
, vol.190
, pp. 477-484
-
-
Ryu, J.H.1
Lee, S.2
Son, S.3
-
34
-
-
84874530972
-
Radiometals for combined imaging and therapy
-
[34] Cutler, C.S., Hennkens, H.M., Sisay, N., et al. Radiometals for combined imaging and therapy. Chem Rev 113 (2012), 858–883.
-
(2012)
Chem Rev
, vol.113
, pp. 858-883
-
-
Cutler, C.S.1
Hennkens, H.M.2
Sisay, N.3
-
35
-
-
0036717382
-
Molecular imaging of cancer with positron emission tomography
-
[35] Sanjiv Sam, G., Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2 (2002), 683–693.
-
(2002)
Nat Rev Cancer
, vol.2
, pp. 683-693
-
-
Sanjiv Sam, G.1
-
36
-
-
84906658072
-
Chelator-free (64)Cu-integrated gold nanomaterials for positron emission tomography imaging guided photothermal cancer therapy
-
[36] Sun, X., Huang, X., Yan, X., et al. Chelator-free (64)Cu-integrated gold nanomaterials for positron emission tomography imaging guided photothermal cancer therapy. ACS Nano 8 (2014), 8438–8446.
-
(2014)
ACS Nano
, vol.8
, pp. 8438-8446
-
-
Sun, X.1
Huang, X.2
Yan, X.3
-
37
-
-
62549126386
-
Tumor specificity and therapeutic efficacy of photosensitizer-encapsulated glycol chitosan-based nanoparticles in tumor-bearing mice
-
[37] So Jin, L., Kyeongsoon, P., Yu-Kyoung, O., et al. Tumor specificity and therapeutic efficacy of photosensitizer-encapsulated glycol chitosan-based nanoparticles in tumor-bearing mice. Biomaterials 30 (2009), 2929–2939.
-
(2009)
Biomaterials
, vol.30
, pp. 2929-2939
-
-
So Jin, L.1
Kyeongsoon, P.2
Yu-Kyoung, O.3
-
38
-
-
0036496275
-
State of the art in the delivery of photosensitizers for photodynamic therapy
-
[38] Niamien, K.Y., Robert, G., Eric, A., State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B 66 (2002), 89–106.
-
(2002)
J Photochem Photobiol B
, vol.66
, pp. 89-106
-
-
Niamien, K.Y.1
Robert, G.2
Eric, A.3
-
39
-
-
0031079237
-
Microscopic structure and thermoresponsiveness of a hydrogel nanoparticle by self-assembly of a hydrophobized polysaccharide
-
[39] Akiyoshi, K., Deguchi, S., Tajima, H., et al. Microscopic structure and thermoresponsiveness of a hydrogel nanoparticle by self-assembly of a hydrophobized polysaccharide. Macromolecules 30 (1997), 857–861.
-
(1997)
Macromolecules
, vol.30
, pp. 857-861
-
-
Akiyoshi, K.1
Deguchi, S.2
Tajima, H.3
-
40
-
-
77955209935
-
In vivo tumor diagnosis and photodynamic therapy via tumoral pH-responsive polymeric micelles
-
[40] Koo, H., Lee, H., Lee, S., et al. In vivo tumor diagnosis and photodynamic therapy via tumoral pH-responsive polymeric micelles. Chem Commun (Camb) 46 (2010), 5668–5670.
-
(2010)
Chem Commun (Camb)
, vol.46
, pp. 5668-5670
-
-
Koo, H.1
Lee, H.2
Lee, S.3
-
41
-
-
84880724692
-
Indocyanine green nanoparticles for theranostic applications
-
[41] Sheng, Z., Hu, D., Xue, M., et al. Indocyanine green nanoparticles for theranostic applications. Nano Micro Lett 5 (2013), 145–150.
-
(2013)
Nano Micro Lett
, vol.5
, pp. 145-150
-
-
Sheng, Z.1
Hu, D.2
Xue, M.3
-
42
-
-
84919756204
-
Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy
-
[42] Sheng, Z., Hu, D., Zheng, M., et al. Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy. ACS Nano 8 (2014), 12310–12322.
-
(2014)
ACS Nano
, vol.8
, pp. 12310-12322
-
-
Sheng, Z.1
Hu, D.2
Zheng, M.3
-
43
-
-
46749142847
-
Magnetic nanoparticles in MR imaging and drug delivery
-
[43] Sun, C., Lee, J.S., Zhang, M., Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60 (2008), 1252–1265.
-
(2008)
Adv Drug Deliv Rev
, vol.60
, pp. 1252-1265
-
-
Sun, C.1
Lee, J.S.2
Zhang, M.3
-
44
-
-
84984785357
-
Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems
-
[44] Karimi, M., Ghasemi, A., Sahandi, Z.P., et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. J Control Release 219 (2016), 355–368.
-
(2016)
J Control Release
, vol.219
, pp. 355-368
-
-
Karimi, M.1
Ghasemi, A.2
Sahandi, Z.P.3
-
45
-
-
80054733230
-
Theranostic magnetic nanoparticles
-
[45] Dongwon, Y., Jae-Hyun, L., Tae-Hyun, S., et al. Theranostic magnetic nanoparticles. Acc Chem Res 44 (2011), 863–874.
-
(2011)
Acc Chem Res
, vol.44
, pp. 863-874
-
-
Dongwon, Y.1
Jae-Hyun, L.2
Tae-Hyun, S.3
-
46
-
-
84878349852
-
New forms of superparamagnetic nanoparticles for biomedical applications
-
[46] Chenjie, X., Shouheng, S., New forms of superparamagnetic nanoparticles for biomedical applications. Adv Drug Deliv Rev 65 (2013), 732–743.
-
(2013)
Adv Drug Deliv Rev
, vol.65
, pp. 732-743
-
-
Chenjie, X.1
Shouheng, S.2
-
47
-
-
65649115808
-
Magnetic nanoparticles for theragnostics
-
[47] Shubayev, V.I., Pisanic, T.R., Jin, S., Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 61 (2009), 467–477.
-
(2009)
Adv Drug Deliv Rev
, vol.61
, pp. 467-477
-
-
Shubayev, V.I.1
Pisanic, T.R.2
Jin, S.3
-
48
-
-
34249795767
-
Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications
-
[48] Ajay Kumar, G., Naregalkar, R.R., Vikas Deep, V., et al. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine (Lond) 2 (2007), 23–39.
-
(2007)
Nanomedicine (Lond)
, vol.2
, pp. 23-39
-
-
Ajay Kumar, G.1
Naregalkar, R.R.2
Vikas Deep, V.3
-
49
-
-
78449253583
-
The effectiveness of a magnetic nanoparticle-based delivery system for BCNU in the treatment of gliomas
-
[49] Hua, M.Y., Liu, H.L., Yang, H.W., et al. The effectiveness of a magnetic nanoparticle-based delivery system for BCNU in the treatment of gliomas. Biomaterials 32 (2011), 516–527.
-
(2011)
Biomaterials
, vol.32
, pp. 516-527
-
-
Hua, M.Y.1
Liu, H.L.2
Yang, H.W.3
-
50
-
-
33644524425
-
Thermally reversible pluronic/heparin nanocapsules exhibiting 1000-fold volume transition
-
[50] Choi, S.H., Lee, J.H., Choi, S.M., et al. Thermally reversible pluronic/heparin nanocapsules exhibiting 1000-fold volume transition. Langmuir 22 (2006), 1758–1762.
-
(2006)
Langmuir
, vol.22
, pp. 1758-1762
-
-
Choi, S.H.1
Lee, J.H.2
Choi, S.M.3
-
51
-
-
61349164904
-
Temperature-sensitive nanocapsules for controlled drug release caused by magnetically triggered structural disruption
-
[51] Liu, T.Y., Liu, K.H., Liu, D.M., et al. Temperature-sensitive nanocapsules for controlled drug release caused by magnetically triggered structural disruption. Adv Funct Mater 19 (2009), 616–623.
-
(2009)
Adv Funct Mater
, vol.19
, pp. 616-623
-
-
Liu, T.Y.1
Liu, K.H.2
Liu, D.M.3
-
52
-
-
33847723425
-
Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia
-
[52] Fortin, J.P., Wilhelm, C., Servais, J., et al. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129 (2007), 2628–2635.
-
(2007)
J Am Chem Soc
, vol.129
, pp. 2628-2635
-
-
Fortin, J.P.1
Wilhelm, C.2
Servais, J.3
-
53
-
-
24144436959
-
Rock magnetic properties of uncultured magnetotactic bacteria
-
[53] Pan, Y., Petersen, N., Winklhofer, M., et al. Rock magnetic properties of uncultured magnetotactic bacteria. Earth Planet Sci Lett 237 (2005), 311–325.
-
(2005)
Earth Planet Sci Lett
, vol.237
, pp. 311-325
-
-
Pan, Y.1
Petersen, N.2
Winklhofer, M.3
-
54
-
-
0034074203
-
Two-dimensional analysis of proteins specific to the bacterial magnetic particle membrane from Magnetospirillum sp. AMB-1
-
[54] Okamura, Y., Takeyama, H., Matsunaga, T., Two-dimensional analysis of proteins specific to the bacterial magnetic particle membrane from Magnetospirillum sp. AMB-1. Appl Biochem Biotechnol, 84–86, 2000, 441.
-
(2000)
Appl Biochem Biotechnol
, vol.84-86
, pp. 441
-
-
Okamura, Y.1
Takeyama, H.2
Matsunaga, T.3
-
55
-
-
84875004306
-
A bacterial backbone: magnetosomes in magnetotactic bacteria
-
Springer Berlin, Heidelberg
-
[55] Lefevre, C.T., Abreu, F., Lins, U., et al. A bacterial backbone: magnetosomes in magnetotactic bacteria. Metal nanoparticles in microbiology, 2011, Springer, Berlin, Heidelberg, 75–102.
-
(2011)
Metal nanoparticles in microbiology
, pp. 75-102
-
-
Lefevre, C.T.1
Abreu, F.2
Lins, U.3
-
56
-
-
64249142118
-
Ferrofluids of magnetic multicore nanoparticles for biomedical applications
-
[56] Dutz, S., Clement, J.H., Eberbeck, D., et al. Ferrofluids of magnetic multicore nanoparticles for biomedical applications. J Magn Magn Mater 321 (2009), 1501–1504.
-
(2009)
J Magn Magn Mater
, vol.321
, pp. 1501-1504
-
-
Dutz, S.1
Clement, J.H.2
Eberbeck, D.3
-
57
-
-
57349173143
-
Bacterial magnetic nanoparticles as drug carriers
-
[57] Guo, L., Bacterial magnetic nanoparticles as drug carriers. J Mater Chem 18 (2008), 5993–5997.
-
(2008)
J Mater Chem
, vol.18
, pp. 5993-5997
-
-
Guo, L.1
-
58
-
-
80052060510
-
Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy
-
[58] Alphandéry, E., Faure, S., Seksek, O., et al. Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano 5 (2011), 6279–6296.
-
(2011)
ACS Nano
, vol.5
, pp. 6279-6296
-
-
Alphandéry, E.1
Faure, S.2
Seksek, O.3
-
59
-
-
84863682021
-
Magnetic response of mitochondria-targeted cancer cells with bacterial magnetic nanoparticles
-
[59] Choi, J., Shin, J., Lee, J., et al. Magnetic response of mitochondria-targeted cancer cells with bacterial magnetic nanoparticles. Chem Commun (Camb) 48 (2012), 7474–7476.
-
(2012)
Chem Commun (Camb)
, vol.48
, pp. 7474-7476
-
-
Choi, J.1
Shin, J.2
Lee, J.3
-
60
-
-
84870780041
-
Bacterial magnetic particles as a novel and efficient gene vaccine delivery system
-
[60] Tang, Y.S., Wang, D., Zhou, C., et al. Bacterial magnetic particles as a novel and efficient gene vaccine delivery system. Gene Ther 19 (2012), 1187–1195.
-
(2012)
Gene Ther
, vol.19
, pp. 1187-1195
-
-
Tang, Y.S.1
Wang, D.2
Zhou, C.3
-
61
-
-
84921807166
-
In situ measurement of magnetization relaxation of internalized nanoparticles in live cells
-
[61] Soukup, D., Moise, S., Céspedes, E., et al. In situ measurement of magnetization relaxation of internalized nanoparticles in live cells. ACS Nano 9 (2015), 231–240.
-
(2015)
ACS Nano
, vol.9
, pp. 231-240
-
-
Soukup, D.1
Moise, S.2
Céspedes, E.3
-
62
-
-
84928892877
-
Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications
-
[62] Shi, D., Sadat, M.E., Dunn, A.W., et al. Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications. Nanoscale 7 (2015), 8209–8232.
-
(2015)
Nanoscale
, vol.7
, pp. 8209-8232
-
-
Shi, D.1
Sadat, M.E.2
Dunn, A.W.3
-
63
-
-
84925624106
-
Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes
-
[63] Di Corato, R., Bealle, G., Kolosnjaj-Tabi, J., et al. Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes. ACS Nano 9 (2015), 2904–2916.
-
(2015)
ACS Nano
, vol.9
, pp. 2904-2916
-
-
Di Corato, R.1
Bealle, G.2
Kolosnjaj-Tabi, J.3
-
64
-
-
33644775686
-
Targeting multidrug resistance in cancer
-
[64] Szakács, G., Paterson, J.K., Ludwig, J.A., et al. Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5 (2006), 219–234.
-
(2006)
Nat Rev Drug Discov
, vol.5
, pp. 219-234
-
-
Szakács, G.1
Paterson, J.K.2
Ludwig, J.A.3
-
65
-
-
84858627258
-
Magnetic nanoparticles for the manipulation of proteins and cells
-
[65] Pan, Y., Du, X., Zhao, F., et al. Magnetic nanoparticles for the manipulation of proteins and cells. Chem Soc Rev 41 (2012), 2912–2942.
-
(2012)
Chem Soc Rev
, vol.41
, pp. 2912-2942
-
-
Pan, Y.1
Du, X.2
Zhao, F.3
-
66
-
-
84888635608
-
Magnetically triggered dual functional nanoparticles for resistance-free apoptotic hyperthermia
-
[66] Yoo, D., Jeong, H., Noh, S.H., et al. Magnetically triggered dual functional nanoparticles for resistance-free apoptotic hyperthermia. Angew Chem Int Ed Engl 52 (2013), 13047–13051.
-
(2013)
Angew Chem Int Ed Engl
, vol.52
, pp. 13047-13051
-
-
Yoo, D.1
Jeong, H.2
Noh, S.H.3
-
67
-
-
80053327702
-
EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise
-
[67] Creixell, M., Bohorquez, A.C., Torres-Lugo, M., et al. EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS Nano 5 (2011), 7124–7129.
-
(2011)
ACS Nano
, vol.5
, pp. 7124-7129
-
-
Creixell, M.1
Bohorquez, A.C.2
Torres-Lugo, M.3
-
68
-
-
0018777295
-
Intracellular hyperthermia. A biophysical approach to cancer treatment via intracellular temperature and biophysical alterations
-
[68] Gordon, R.T., Hines, J.R., Gordon, D., Intracellular hyperthermia. A biophysical approach to cancer treatment via intracellular temperature and biophysical alterations. Med Hypotheses 5 (1979), 83–102.
-
(1979)
Med Hypotheses
, vol.5
, pp. 83-102
-
-
Gordon, R.T.1
Hines, J.R.2
Gordon, D.3
-
69
-
-
84920998382
-
Core-shell-type magnetic mesoporous silica nanocomposites for bioimaging and therapeutic agent delivery
-
[69] Wang, Y., Gu, H., Core-shell-type magnetic mesoporous silica nanocomposites for bioimaging and therapeutic agent delivery. Adv Mater 27 (2015), 576–585.
-
(2015)
Adv Mater
, vol.27
, pp. 576-585
-
-
Wang, Y.1
Gu, H.2
-
70
-
-
84862641306
-
Image guided therapy: the advent of theranostic agents
-
[70] Terreno, E., Uggeri, F., Aime, S., Image guided therapy: the advent of theranostic agents. J Control Release 161 (2012), 328–337.
-
(2012)
J Control Release
, vol.161
, pp. 328-337
-
-
Terreno, E.1
Uggeri, F.2
Aime, S.3
-
71
-
-
78649330634
-
Imaging and drug delivery using theranostic nanoparticles
-
[71] Janib, S.M., Moses, A.S., Mackay, J.A., Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev 62 (2010), 1052–1063.
-
(2010)
Adv Drug Deliv Rev
, vol.62
, pp. 1052-1063
-
-
Janib, S.M.1
Moses, A.S.2
Mackay, J.A.3
-
72
-
-
84903217384
-
An MRI-sensitive, non-photobleachable porphysome photothermal agent
-
[72] MacDonald, T.D., Liu, T.W., Zheng, G., An MRI-sensitive, non-photobleachable porphysome photothermal agent. Angew Chem Int Ed Engl 53 (2014), 6956–6959.
-
(2014)
Angew Chem Int Ed Engl
, vol.53
, pp. 6956-6959
-
-
MacDonald, T.D.1
Liu, T.W.2
Zheng, G.3
-
73
-
-
67649264901
-
Inorganic nanoparticles for MRI contrast agents
-
[73] Na, H.B., Song, I.C., Hyeon, T., Inorganic nanoparticles for MRI contrast agents. Adv Mater 21 (2009), 2133–2148.
-
(2009)
Adv Mater
, vol.21
, pp. 2133-2148
-
-
Na, H.B.1
Song, I.C.2
Hyeon, T.3
-
74
-
-
79952613531
-
Magnetosome-like ferrimagnetic iron oxide nanocubes for highly sensitive MRI of single cells and transplanted pancreatic islets
-
[74] Lee, N., Kim, H., Choi, S.H., et al. Magnetosome-like ferrimagnetic iron oxide nanocubes for highly sensitive MRI of single cells and transplanted pancreatic islets. Proc Natl Acad Sci USA 108 (2011), 2662–2667.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 2662-2667
-
-
Lee, N.1
Kim, H.2
Choi, S.H.3
-
75
-
-
84940729408
-
Hydrophilic packaging of iron oxide nanoclusters for highly sensitive imaging
-
[75] Smith, C.E., Ernenwein, D., Shkumatov, A., et al. Hydrophilic packaging of iron oxide nanoclusters for highly sensitive imaging. Biomaterials 69 (2015), 184–190.
-
(2015)
Biomaterials
, vol.69
, pp. 184-190
-
-
Smith, C.E.1
Ernenwein, D.2
Shkumatov, A.3
-
76
-
-
84923351612
-
Stimuli-responsive cancer therapy based on nanoparticles
-
[76] Yu, J., Chu, X., Hou, Y., Stimuli-responsive cancer therapy based on nanoparticles. Chem Commun (Camb) 50 (2014), 11614–11630.
-
(2014)
Chem Commun (Camb)
, vol.50
, pp. 11614-11630
-
-
Yu, J.1
Chu, X.2
Hou, Y.3
-
77
-
-
84886292840
-
Stimuli-responsive nanocarriers for drug delivery
-
[77] Mura, S., Nicolas, J., Couvreur, P., Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12 (2013), 991–1003.
-
(2013)
Nat Mater
, vol.12
, pp. 991-1003
-
-
Mura, S.1
Nicolas, J.2
Couvreur, P.3
-
78
-
-
78649447847
-
Targeted renal therapies through microbubbles and ultrasound
-
[78] Deelman, L.E., Decleves, A.E., Rychak, J.J., et al. Targeted renal therapies through microbubbles and ultrasound. Adv Drug Deliv Rev 62 (2010), 1369–1377.
-
(2010)
Adv Drug Deliv Rev
, vol.62
, pp. 1369-1377
-
-
Deelman, L.E.1
Decleves, A.E.2
Rychak, J.J.3
-
79
-
-
79953752212
-
Gold nanocages covered with thermally-responsive polymers for controlled release by high-intensity focused ultrasound
-
[79] Weiyang, L., Xin, C., Chulhong, K., et al. Gold nanocages covered with thermally-responsive polymers for controlled release by high-intensity focused ultrasound. Nanoscale 3 (2011), 1724–1730.
-
(2011)
Nanoscale
, vol.3
, pp. 1724-1730
-
-
Weiyang, L.1
Xin, C.2
Chulhong, K.3
-
80
-
-
79953856925
-
A new theranostic system based on gold nanocages and phase-change materials with unique features for photoacoustic imaging and controlled release
-
[80] Moon, G.D., Choi, S.W., Cai, X., et al. A new theranostic system based on gold nanocages and phase-change materials with unique features for photoacoustic imaging and controlled release. J Am Chem Soc 133 (2011), 4762–4765.
-
(2011)
J Am Chem Soc
, vol.133
, pp. 4762-4765
-
-
Moon, G.D.1
Choi, S.W.2
Cai, X.3
-
81
-
-
84870249845
-
Crucial factors and emerging concepts in ultrasound-triggered drug delivery
-
[81] Geers, B., Dewitte, H., De Smedt, S.C., et al. Crucial factors and emerging concepts in ultrasound-triggered drug delivery. J Control Release 164 (2012), 248–255.
-
(2012)
J Control Release
, vol.164
, pp. 248-255
-
-
Geers, B.1
Dewitte, H.2
De Smedt, S.C.3
-
82
-
-
84923478202
-
Nanohybrid liposomal cerasomes with good physiological stability and rapid temperature responsiveness for high intensity focused ultrasound triggered local chemotherapy of cancer
-
[82] Liang, X., Gao, J., Jiang, L., et al. Nanohybrid liposomal cerasomes with good physiological stability and rapid temperature responsiveness for high intensity focused ultrasound triggered local chemotherapy of cancer. ACS Nano 9 (2015), 1280–1293.
-
(2015)
ACS Nano
, vol.9
, pp. 1280-1293
-
-
Liang, X.1
Gao, J.2
Jiang, L.3
-
83
-
-
14544272807
-
Ultrasonic drug delivery – a general review
-
[83] Pitt, W.G., Husseini, G.A., Staples, B.J., Ultrasonic drug delivery – a general review. Expert Opin Drug Deliv 1 (2004), 37–56.
-
(2004)
Expert Opin Drug Deliv
, vol.1
, pp. 37-56
-
-
Pitt, W.G.1
Husseini, G.A.2
Staples, B.J.3
-
84
-
-
67349274695
-
Ultrasound triggered release of cisplatin from liposomes in murine tumors
-
[84] Schroeder, A., Honen, R., Turjeman, K., et al. Ultrasound triggered release of cisplatin from liposomes in murine tumors. J Control Release 137 (2009), 63–68.
-
(2009)
J Control Release
, vol.137
, pp. 63-68
-
-
Schroeder, A.1
Honen, R.2
Turjeman, K.3
-
85
-
-
84984782124
-
Acoustic behavior of microbubbles and implications for drug delivery
-
[85] Kooiman, K., Vos, H.J., Versluis, M., et al. Acoustic behavior of microbubbles and implications for drug delivery. Geophys Res Lett 28 (2001), 4283–4286.
-
(2001)
Geophys Res Lett
, vol.28
, pp. 4283-4286
-
-
Kooiman, K.1
Vos, H.J.2
Versluis, M.3
-
86
-
-
84958078210
-
I. Sonoprinting and the importance of microbubble loading for the ultrasound mediated cellular delivery of nanoparticles
-
[86] De Cock, I., Lajoinie, G., Versluis, M., et al. I. Sonoprinting and the importance of microbubble loading for the ultrasound mediated cellular delivery of nanoparticles. Biomaterials 83 (2016), 294–307.
-
(2016)
Biomaterials
, vol.83
, pp. 294-307
-
-
De Cock, I.1
Lajoinie, G.2
Versluis, M.3
-
87
-
-
33745924402
-
Microbubble contrast agents: targeted ultrasound imaging and ultrasound-assisted drug-delivery applications
-
[87] Klibanov, A.L., Microbubble contrast agents: targeted ultrasound imaging and ultrasound-assisted drug-delivery applications. Invest Radiol 41 (2006), 354–362.
-
(2006)
Invest Radiol
, vol.41
, pp. 354-362
-
-
Klibanov, A.L.1
-
88
-
-
74549145150
-
Nanobubbles from gas-generating polymeric nanoparticles: ultrasound imaging of living subjects
-
[88] Eunah, K., Hyun Su, M., Jaeyoung, L., et al. Nanobubbles from gas-generating polymeric nanoparticles: ultrasound imaging of living subjects. Angew Chem Int Ed Engl 49 (2010), 524–528.
-
(2010)
Angew Chem Int Ed Engl
, vol.49
, pp. 524-528
-
-
Eunah, K.1
Hyun Su, M.2
Jaeyoung, L.3
-
89
-
-
4544352817
-
Synthesis and characterization of thermosensitive chitosan copolymer as a novel biomaterial
-
[89] Lee, J.W., Jung, M.C., Park, H.D., et al. Synthesis and characterization of thermosensitive chitosan copolymer as a novel biomaterial. J Biomater Sci Polymer, Edn 15 (2004), 214–303.
-
(2004)
J Biomater Sci Polymer, Edn
, vol.15
, pp. 214-303
-
-
Lee, J.W.1
Jung, M.C.2
Park, H.D.3
-
90
-
-
84953270962
-
Theranostic gas-generating nanoparticles for targeted ultrasound imaging and treatment of neuroblastoma
-
[90] Lee, J., Min, H.S., You, D.G., et al. Theranostic gas-generating nanoparticles for targeted ultrasound imaging and treatment of neuroblastoma. J Control Release 223 (2016), 197–206.
-
(2016)
J Control Release
, vol.223
, pp. 197-206
-
-
Lee, J.1
Min, H.S.2
You, D.G.3
-
91
-
-
84927176348
-
In situ conversion of porphyrin microbubbles to nanoparticles for multimodality imaging
-
[91] Huynh, E., Leung, B.Y., Helfield, B.L., et al. In situ conversion of porphyrin microbubbles to nanoparticles for multimodality imaging. Nat Nanotechnol 10 (2015), 325–332.
-
(2015)
Nat Nanotechnol
, vol.10
, pp. 325-332
-
-
Huynh, E.1
Leung, B.Y.2
Helfield, B.L.3
-
92
-
-
84960157548
-
Ultrasound-induced reactive oxygen species mediated therapy and imaging using a Fenton reaction activable polymersome
-
[92] Li, W.P., Su, C.H., Chang, Y.C., et al. Ultrasound-induced reactive oxygen species mediated therapy and imaging using a Fenton reaction activable polymersome. ACS Nano 10 (2016), 2017–2027.
-
(2016)
ACS Nano
, vol.10
, pp. 2017-2027
-
-
Li, W.P.1
Su, C.H.2
Chang, Y.C.3
|