-
1
-
-
70350236733
-
Cystic fibrosis transmembrane conductance regulator: Using differential reactivity toward channel-permeant and channel-impermeant thiol-reactive probes to test a molecular model for the pore
-
Alexander C, Ivetac A, Liu X, Norimatsu Y, Serrano JR, Landstrom A, Sansom M, Dawson DC. Cystic fibrosis transmembrane conductance regulator: using differential reactivity toward channel-permeant and channel-impermeant thiol-reactive probes to test a molecular model for the pore. Biochemistry 48: 10078-10088, 2009.
-
(2009)
Biochemistry
, vol.48
, pp. 10078-10088
-
-
Alexander, C.1
Ivetac, A.2
Liu, X.3
Norimatsu, Y.4
Serrano, J.R.5
Landstrom, A.6
Sansom, M.7
Dawson, D.C.8
-
2
-
-
77956237499
-
Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation
-
Bai Y, Li M, Hwang TC. Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation. J Gen Physiol 136: 293-309, 2010.
-
(2010)
J Gen Physiol
, vol.136
, pp. 293-309
-
-
Bai, Y.1
Li, M.2
Hwang, T.C.3
-
3
-
-
41949139811
-
Conformational changes in a pore-lining helix coupled to cystic fibrosis transmembrane conductance regulator channel gating
-
Beck EJ, Yang Y, Yaemsiri S, Raghuram V. Conformational changes in a pore-lining helix coupled to cystic fibrosis transmembrane conductance regulator channel gating. J Biol Chem 283: 4957-4966, 2008.
-
(2008)
J Biol Chem
, vol.283
, pp. 4957-4966
-
-
Beck, E.J.1
Yang, Y.2
Yaemsiri, S.3
Raghuram, V.4
-
4
-
-
0027220387
-
Possible regulation of CFTR-chloride channels by membrane-bound phosphatases in pancreatic duct cells
-
Becq F, Fanjul M, Merten M, Figarella C, Hollande E, Gola M. Possible regulation of CFTR-chloride channels by membrane-bound phosphatases in pancreatic duct cells. FEBS Lett 327: 337-342, 1993.
-
(1993)
FEBS Lett
, vol.327
, pp. 337-342
-
-
Becq, F.1
Fanjul, M.2
Merten, M.3
Figarella, C.4
Hollande, E.5
Gola, M.6
-
5
-
-
84888050424
-
CFTR: Effect of ICL2 and ICL4 amino acids in close spatial proximity on the current properties of the channel
-
Billet A, Mornon JP, Jollivet M, Lehn P, Callebaut I, Becq F. CFTR: effect of ICL2 and ICL4 amino acids in close spatial proximity on the current properties of the channel. J Cyst Fibros 12: 737-745, 2013.
-
(2013)
J Cyst Fibros
, vol.12
, pp. 737-745
-
-
Billet, A.1
Mornon, J.P.2
Jollivet, M.3
Lehn, P.4
Callebaut, I.5
Becq, F.6
-
6
-
-
78650659673
-
+ exchanger regulatory factor 1 expression in human bronchi and their modifications in cystic fibrosis
-
+ exchanger regulatory factor 1 expression in human bronchi and their modifications in cystic fibrosis. Am J Respir Cell Mol Biol 44: 91-98, 2011.
-
(2011)
Am J Respir Cell Mol Biol
, vol.44
, pp. 91-98
-
-
Bossard, F.1
Silantieff, E.2
Lavazais-Blancou, E.3
Robay, A.4
Sagan, C.5
Rozec, B.6
Gauthier, C.7
-
7
-
-
0025242929
-
Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis
-
Cheng SH, Gregory RJ, Marshall J, Paul S, Souza DW, White GA, O’Riordan CR, Smith AE. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63: 827-834, 1990.
-
(1990)
Cell
, vol.63
, pp. 827-834
-
-
Cheng, S.H.1
Gregory, R.J.2
Marshall, J.3
Paul, S.4
Souza, D.W.5
White, G.A.6
O’Riordan, C.R.7
Smith, A.E.8
-
8
-
-
84905394929
-
Three charged amino acids in extracellular loop 1 are involved in maintaining the outer pore architecture of CFTR
-
Cui G, Rahman KS, Infield DT, Kuang C, Prince CZ, McCarty NA. Three charged amino acids in extracellular loop 1 are involved in maintaining the outer pore architecture of CFTR. J Gen Physiol 144: 159-179, 2014.
-
(2014)
J Gen Physiol
, vol.144
, pp. 159-179
-
-
Cui, G.1
Rahman, K.S.2
Infield, D.T.3
Kuang, C.4
Prince, C.Z.5
McCarty, N.A.6
-
9
-
-
84862614574
-
Differential contribution of TM6 and TM12 to the pore of CFTR identified by three sulfonylureabased blockers
-
Cui G, Song B, Turki HW, McCarty NA. Differential contribution of TM6 and TM12 to the pore of CFTR identified by three sulfonylureabased blockers. Pflügers Arch 463: 405-418, 2012.
-
(2012)
Pflügers Arch
, vol.463
, pp. 405-418
-
-
Cui, G.1
Song, B.2
Turki, H.W.3
McCarty, N.A.4
-
10
-
-
0026337305
-
Chloride conductance expressed by ΔF508 and other mutant CFTRs in Xenopus oocytes
-
Drumm ML, Wilkinson DJ, Smit LS, Worrell RT, Strong TV, Frizzell RA, Dawson DC, Collins FS. Chloride conductance expressed by ΔF508 and other mutant CFTRs in Xenopus oocytes. Science 254: 1797-1799, 1991.
-
(1991)
Science
, vol.254
, pp. 1797-1799
-
-
Drumm, M.L.1
Wilkinson, D.J.2
Smit, L.S.3
Worrell, R.T.4
Strong, T.V.5
Frizzell, R.A.6
Dawson, D.C.7
Collins, F.S.8
-
11
-
-
62549099131
-
Oxidation of a single active site suffices for the functional inactivation of the dimeric Bacillus subtilis OhrR repressor in vitro
-
Eiamphungporn W, Soonsanga S, Lee JW, Helmann JD. Oxidation of a single active site suffices for the functional inactivation of the dimeric Bacillus subtilis OhrR repressor in vitro. Nucleic Acids Res 37: 1174-1181, 2009.
-
(2009)
Nucleic Acids Res
, vol.37
, pp. 1174-1181
-
-
Eiamphungporn, W.1
Soonsanga, S.2
Lee, J.W.3
Helmann, J.D.4
-
12
-
-
84907610568
-
Metal bridges illuminate transmembrane domain movements during gating of the cystic fibrosis transmembrane conductance regulator chloride channel
-
El Hiani Y, Linsdell P. Metal bridges illuminate transmembrane domain movements during gating of the cystic fibrosis transmembrane conductance regulator chloride channel. J Biol Chem 289: 28149-28159, 2014.
-
(2014)
J Biol Chem
, vol.289
, pp. 28149-28159
-
-
El Hiani, Y.1
Linsdell, P.2
-
13
-
-
38049166041
-
State-dependent inhibition of cystic fibrosis transmembrane conductance regulator chloride channels by a novel peptide toxin
-
Fuller MD, Thompson CH, Zhang ZR, Freeman CS, Schay E, Szakacs G, Bakos E, Sarkadi B, McMaster D, French RJ, Pohl J, Kubanek J, McCarty NA. State-dependent inhibition of cystic fibrosis transmembrane conductance regulator chloride channels by a novel peptide toxin. J Biol Chem 282: 37545-37555, 2007.
-
(2007)
J Biol Chem
, vol.282
, pp. 37545-37555
-
-
Fuller, M.D.1
Thompson, C.H.2
Zhang, Z.R.3
Freeman, C.S.4
Schay, E.5
Szakacs, G.6
Bakos, E.7
Sarkadi, B.8
McMaster, D.9
French, R.J.10
Pohl, J.11
Kubanek, J.12
McCarty, N.A.13
-
14
-
-
28444483646
-
The block of CFTR by scorpion venom is state-dependent
-
Fuller MD, Zhang ZR, Cui G, McCarty NA. The block of CFTR by scorpion venom is state-dependent. Biophys J 89: 3960-3975, 2005.
-
(2005)
Biophys J
, vol.89
, pp. 3960-3975
-
-
Fuller, M.D.1
Zhang, Z.R.2
Cui, G.3
McCarty, N.A.4
-
15
-
-
33645307384
-
The ABC protein turned chloride channel whose failure causes cystic fibrosis
-
Gadsby DC, Vergani P, Csanady L. The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature 440: 477-483, 2006.
-
(2006)
Nature
, vol.440
, pp. 477-483
-
-
Gadsby, D.C.1
Vergani, P.2
Csanady, L.3
-
16
-
-
84874150515
-
Cysteine scanning of CFTR’s first transmembrane segment reveals its plausible roles in gating and permeation
-
Gao X, Bai Y, Hwang TC. Cysteine scanning of CFTR’s first transmembrane segment reveals its plausible roles in gating and permeation. Biophys J 104: 786-797, 2013.
-
(2013)
Biophys J
, vol.104
, pp. 786-797
-
-
Gao, X.1
Bai, Y.2
Hwang, T.C.3
-
17
-
-
0035805490
-
Disease-associated mutations in the extracytoplasmic loops of cystic fibrosis transmembrane conductance regulator do not impede biosynthetic processing but impair chloride channel stability
-
Hammerle MM, Aleksandrov AA, Riordan JR. Disease-associated mutations in the extracytoplasmic loops of cystic fibrosis transmembrane conductance regulator do not impede biosynthetic processing but impair chloride channel stability. J Biol Chem 276: 14848-14854, 2001.
-
(2001)
J Biol Chem
, vol.276
, pp. 14848-14854
-
-
Hammerle, M.M.1
Aleksandrov, A.A.2
Riordan, J.R.3
-
18
-
-
55549094466
-
Multiple membrane-cytoplasmic domain contacts in the cystic fibrosis transmembrane conductance regulator (CFTR) mediate regulation of channel gating
-
He L, Aleksandrov AA, Serohijos AW, Hegedus T, Aleksandrov LA, Cui L, Dokholyan NV, Riordan JR. Multiple membrane-cytoplasmic domain contacts in the cystic fibrosis transmembrane conductance regulator (CFTR) mediate regulation of channel gating. J Biol Chem 283: 26383-26390, 2008.
-
(2008)
J Biol Chem
, vol.283
, pp. 26383-26390
-
-
He, L.1
Aleksandrov, A.A.2
Serohijos, A.W.3
Hegedus, T.4
Aleksandrov, L.A.5
Cui, L.6
Dokholyan, N.V.7
Riordan, J.R.8
-
19
-
-
84861310612
-
Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation
-
Hohl M, Briand C, Grutter MG, Seeger MA. Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation. Nat Struct Mol Biol 19: 395-402, 2012.
-
(2012)
Nat Struct Mol Biol
, vol.19
, pp. 395-402
-
-
Hohl, M.1
Briand, C.2
Grutter, M.G.3
Seeger, M.A.4
-
20
-
-
84874710058
-
Cystic fibrosis transmembrane conductance regulator (ABCC7) structure
-
Hunt JF, Wang C, Ford RC. Cystic fibrosis transmembrane conductance regulator (ABCC7) structure. Cold Spring Harb Perspect Med 3: a009514, 2013.
-
(2013)
Cold Spring Harb Perspect Med
, vol.3
-
-
Hunt, J.F.1
Wang, C.2
Ford, R.C.3
-
21
-
-
84874669588
-
The CFTR ion channel: Gating, regulation, and anion permeation
-
Hwang TC, Kirk KL. The CFTR ion channel: gating, regulation, and anion permeation. Cold Spring Harb Perspect Med 3: a009498, 2013.
-
(2013)
Cold Spring Harb Perspect Med
, vol.3
-
-
Hwang, T.C.1
Kirk, K.L.2
-
22
-
-
34547399134
-
A complex thiolate switch regulates the Bacillus subtilis organic peroxide sensor OhrR
-
Lee JW, Soonsanga S, Helmann JD. A complex thiolate switch regulates the Bacillus subtilis organic peroxide sensor OhrR. Proc Natl Acad Sci USA 104: 8743-8748, 2007.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 8743-8748
-
-
Lee, J.W.1
Soonsanga, S.2
Helmann, J.D.3
-
23
-
-
84900449189
-
Refined structures of mouse P-glycoprotein
-
Li J, Jaimes KF, Aller SG. Refined structures of mouse P-glycoprotein. Protein Sci 23: 34-46, 2014.
-
(2014)
Protein Sci
, vol.23
, pp. 34-46
-
-
Li, J.1
Jaimes, K.F.2
Aller, S.G.3
-
24
-
-
84936746451
-
Metal bridges to probe membrane ion channel structure and function
-
Linsdell P. Metal bridges to probe membrane ion channel structure and function. Biomol Concepts 6: 191-203, 2015.
-
(2015)
Biomol Concepts
, vol.6
, pp. 191-203
-
-
Linsdell, P.1
-
25
-
-
33646363584
-
Variable reactivity of an engineered cysteine at position 338 in cystic fibrosis transmembrane conductance regulator reflects different chemical states of the thiol
-
Liu X, Alexander C, Serrano J, Borg E, Dawson DC. Variable reactivity of an engineered cysteine at position 338 in cystic fibrosis transmembrane conductance regulator reflects different chemical states of the thiol. J Biol Chem 281: 8275-8285, 2006.
-
(2006)
J Biol Chem
, vol.281
, pp. 8275-8285
-
-
Liu, X.1
Alexander, C.2
Serrano, J.3
Borg, E.4
Dawson, D.C.5
-
26
-
-
10044283304
-
CFTR: A cysteine at position 338 in TM6 senses a positive electrostatic potential in the pore
-
Liu X, Zhang ZR, Fuller MD, Billingsley J, McCarty NA, Dawson DC. CFTR: a cysteine at position 338 in TM6 senses a positive electrostatic potential in the pore. Biophys J 87: 3826-3841, 2004.
-
(2004)
Biophys J
, vol.87
, pp. 3826-3841
-
-
Liu, X.1
Zhang, Z.R.2
Fuller, M.D.3
Billingsley, J.4
McCarty, N.A.5
Dawson, D.C.6
-
27
-
-
0027220707
-
Voltage-dependent block of the cystic fibrosis transmembrane conductance regulator Cl- channel by two closely related arylaminobenzoates
-
McCarty NA, McDonough S, Cohen BN, Riordan JR, Davidson N, Lester HA. Voltage-dependent block of the cystic fibrosis transmembrane conductance regulator Cl- channel by two closely related arylaminobenzoates. J Gen Physiol 102: 1-23, 1993.
-
(1993)
J Gen Physiol
, vol.102
, pp. 1-23
-
-
McCarty, N.A.1
McDonough, S.2
Cohen, B.N.3
Riordan, J.R.4
Davidson, N.5
Lester, H.A.6
-
28
-
-
33750222000
-
In vivo phosphorylation of CFTR promotes formation of a nucleotidebinding domain heterodimer
-
Mense M, Vergani P, White DM, Altberg G, Nairn AC, Gadsby DC. In vivo phosphorylation of CFTR promotes formation of a nucleotidebinding domain heterodimer. EMBO J 25: 4728-4739, 2006.
-
(2006)
EMBO J
, vol.25
, pp. 4728-4739
-
-
Mense, M.1
Vergani, P.2
White, D.M.3
Altberg, G.4
Nairn, A.C.5
Gadsby, D.C.6
-
29
-
-
84869860229
-
Locating a plausible binding site for an open-channel blocker, GlyH-101, in the pore of the cystic fibrosis transmembrane conductance regulator
-
Norimatsu Y, Ivetac A, Alexander C, O’Donnell N, Frye L, Sansom MS, Dawson DC. Locating a plausible binding site for an open-channel blocker, GlyH-101, in the pore of the cystic fibrosis transmembrane conductance regulator. Mol Pharmacol 82: 1042-1055, 2012.
-
(2012)
Mol Pharmacol
, vol.82
, pp. 1042-1055
-
-
Norimatsu, Y.1
Ivetac, A.2
Alexander, C.3
O’Donnell, N.4
Frye, L.5
Sansom, M.S.6
Dawson, D.C.7
-
30
-
-
0029816943
-
Function of Xenopus cystic fibrosis transmembrane conductance regulator (CFTR) Cl channels and use of human-Xenopus chimeras to investigate the pore properties of CFTR
-
Price MP, Ishihara H, Sheppard DN, Welsh MJ. Function of Xenopus cystic fibrosis transmembrane conductance regulator (CFTR) Cl channels and use of human-Xenopus chimeras to investigate the pore properties of CFTR. J Biol Chem 271: 25184-25191, 1996.
-
(1996)
J Biol Chem
, vol.271
, pp. 25184-25191
-
-
Price, M.P.1
Ishihara, H.2
Sheppard, D.N.3
Welsh, M.J.4
-
31
-
-
84867608087
-
β-Adrenergic sweat secretion as a diagnostic test for cystic fibrosis
-
Quinton P, Molyneux L, Ip W, Dupuis A, Avolio J, Tullis E, Conrad D, Shamsuddin AK, Durie P, Gonska T. β-Adrenergic sweat secretion as a diagnostic test for cystic fibrosis. Am J Respir Crit Care Med 186: 732-739, 2012.
-
(2012)
Am J Respir Crit Care Med
, vol.186
, pp. 732-739
-
-
Quinton, P.1
Molyneux, L.2
Ip, W.3
Dupuis, A.4
Avolio, J.5
Tullis, E.6
Conrad, D.7
Shamsuddin, A.K.8
Durie, P.9
Gonska, T.10
-
32
-
-
84884699027
-
Modeling the conformational changes underlying channel opening in CFTR
-
Rahman KS, Cui G, Harvey SC, McCarty NA. Modeling the conformational changes underlying channel opening in CFTR. PLoS One 8: e74574, 2013.
-
(2013)
Plos One
, vol.8
-
-
Rahman, K.S.1
Cui, G.2
Harvey, S.C.3
McCarty, N.A.4
-
33
-
-
0024424270
-
Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA
-
Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245: 1066-1073, 1989.
-
(1989)
Science
, vol.245
, pp. 1066-1073
-
-
Riordan, J.R.1
Rommens, J.M.2
Kerem, B.3
Alon, N.4
Rozmahel, R.5
Grzelczak, Z.6
Zielenski, J.7
Lok, S.8
Plavsic, N.9
Chou, J.L.10
-
34
-
-
80052340084
-
Nasal potential difference measurements to assess CFTR ion channel activity
-
Rowe SM, Clancy JP, Wilschanski M. Nasal potential difference measurements to assess CFTR ion channel activity. Methods Mol Biol 741: 69-86, 2011.
-
(2011)
Methods Mol Biol
, vol.741
, pp. 69-86
-
-
Rowe, S.M.1
Clancy, J.P.2
Wilschanski, M.3
-
36
-
-
0033153764
-
Rescue of dysfunctional F508-CFTR chloride channel activity by IBMX
-
Schultz BD, Frizzell RA, Bridges RJ. Rescue of dysfunctional F508-CFTR chloride channel activity by IBMX. J Membr Biol 170: 51-66, 1999.
-
(1999)
J Membr Biol
, vol.170
, pp. 51-66
-
-
Schultz, B.D.1
Frizzell, R.A.2
Bridges, R.J.3
-
37
-
-
84880428551
-
Origin and evolution of the cystic fibrosis transmembrane regulator protein R domain
-
Sebastian A, Rishishwar L, Wang J, Bernard KF, Conley AB, Mc-Carty NA, Jordan IK. Origin and evolution of the cystic fibrosis transmembrane regulator protein R domain. Gene 523: 137-146, 2013.
-
(2013)
Gene
, vol.523
, pp. 137-146
-
-
Sebastian, A.1
Rishishwar, L.2
Wang, J.3
Bernard, K.F.4
Conley, A.B.5
Mc-Carty, N.A.6
Jordan, I.K.7
-
39
-
-
0027364318
-
Functional roles of the nucleotide-binding folds in the activation of the cystic fibrosis transmembrane conductance regulator
-
Smit LS, Wilkinson DJ, Mansoura MK, Collins FS, Dawson DC. Functional roles of the nucleotide-binding folds in the activation of the cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci USA 90: 9963-9967, 1993.
-
(1993)
Proc Natl Acad Sci USA
, vol.90
, pp. 9963-9967
-
-
Smit, L.S.1
Wilkinson, D.J.2
Mansoura, M.K.3
Collins, F.S.4
Dawson, D.C.5
-
40
-
-
84890435909
-
Effect of ivacaftor on CFTR forms with missense mutations associated with defects in protein processing or function
-
Van Goor F, Yu H, Burton B, Hoffman BJ. Effect of ivacaftor on CFTR forms with missense mutations associated with defects in protein processing or function. J Cyst Fibros 13: 29-36, 2014.
-
(2014)
J Cyst Fibros
, vol.13
, pp. 29-36
-
-
Van Goor, F.1
Yu, H.2
Burton, B.3
Hoffman, B.J.4
-
41
-
-
21244494942
-
Activating cystic fibrosis transmembrane conductance regulator channels with pore blocker analogs
-
Wang W, Li G, Clancy JP, Kirk KL. Activating cystic fibrosis transmembrane conductance regulator channels with pore blocker analogs. J Biol Chem 280: 23622-23630, 2005.
-
(2005)
J Biol Chem
, vol.280
, pp. 23622-23630
-
-
Wang, W.1
Li, G.2
Clancy, J.P.3
Kirk, K.L.4
-
42
-
-
84866429140
-
Relative movements of transmembrane regions at the outer mouth of the cystic fibrosis transmembrane conductance regulator channel pore during channel gating
-
Wang W, Linsdell P. Relative movements of transmembrane regions at the outer mouth of the cystic fibrosis transmembrane conductance regulator channel pore during channel gating. J Biol Chem 287: 32136-32146, 2012.
-
(2012)
J Biol Chem
, vol.287
, pp. 32136-32146
-
-
Wang, W.1
Linsdell, P.2
-
43
-
-
84910093024
-
An electrostatic interaction at the tetrahelix bundle promotes phosphorylation-dependent cystic fibrosis transmembrane conductance regulator (CFTR) channel opening
-
Wang W, Roessler BC, Kirk KL. An electrostatic interaction at the tetrahelix bundle promotes phosphorylation-dependent cystic fibrosis transmembrane conductance regulator (CFTR) channel opening. J Biol Chem 289: 30364-30378, 2014.
-
(2014)
J Biol Chem
, vol.289
, pp. 30364-30378
-
-
Wang, W.1
Roessler, B.C.2
Kirk, K.L.3
-
44
-
-
37649004412
-
Flexibility in the ABC transporter MsbA: Alternating access with a twist
-
Ward A, Reyes CL, Yu J, Roth CB, Chang G. Flexibility in the ABC transporter MsbA: alternating access with a twist. Proc Natl Acad Sci USA 104: 19005-19010, 2007.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 19005-19010
-
-
Ward, A.1
Reyes, C.L.2
Yu, J.3
Roth, C.B.4
Chang, G.5
-
45
-
-
0030045751
-
CFTR: The nucleotide binding folds regulate the accessibility and stability of the activated state
-
Wilkinson DJ, Mansoura MK, Watson PY, Smit LS, Collins FS, Dawson DC. CFTR: the nucleotide binding folds regulate the accessibility and stability of the activated state. J Gen Physiol 107: 103-119, 1996.
-
(1996)
J Gen Physiol
, vol.107
, pp. 103-119
-
-
Wilkinson, D.J.1
Mansoura, M.K.2
Watson, P.Y.3
Smit, L.S.4
Collins, F.S.5
Dawson, D.C.6
-
46
-
-
0030816586
-
CFTR activation: Additive effects of stimulatory and inhibitory phosphorylation sites in the R domain
-
Wilkinson DJ, Strong TV, Mansoura MK, Wood DL, Smith SS, Collins FS, Dawson DC. CFTR activation: additive effects of stimulatory and inhibitory phosphorylation sites in the R domain. Am J Physiol Lung Cell Mol Physiol 273: L127-L133, 1997.
-
(1997)
Am J Physiol Lung Cell Mol Physiol
, vol.273
, pp. L127-L133
-
-
Wilkinson, D.J.1
Strong, T.V.2
Mansoura, M.K.3
Wood, D.L.4
Smith, S.S.5
Collins, F.S.6
Dawson, D.C.7
-
47
-
-
29644442896
-
State-dependent chemical reactivity of an engineered cysteine reveals conformational changes in the outer vestibule of the cystic fibrosis transmembrane conductance regulator
-
Zhang ZR, Song B, McCarty NA. State-dependent chemical reactivity of an engineered cysteine reveals conformational changes in the outer vestibule of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 280: 41997-42003, 2005.
-
(2005)
J Biol Chem
, vol.280
, pp. 41997-42003
-
-
Zhang, Z.R.1
Song, B.2
McCarty, N.A.3
-
48
-
-
66249145702
-
Geometric characteristics of hydrogen bonds involving sulfur atoms in proteins
-
Zhou P, Tian F, Lv F, Shang Z. Geometric characteristics of hydrogen bonds involving sulfur atoms in proteins. Proteins 76: 151-163, 2009.
-
(2009)
Proteins
, vol.76
, pp. 151-163
-
-
Zhou, P.1
Tian, F.2
Lv, F.3
Shang, Z.4
|