메뉴 건너뛰기




Volumn 231, Issue 12, 2016, Pages 2563-2569

CRISPR-Cas-Assisted Multiplexing (CAM): Simple Same-Day Multi-Locus Engineering in Yeast

Author keywords

[No Author keywords available]

Indexed keywords

FUNGAL RNA; GUIDE RNA;

EID: 84983246741     PISSN: 00219541     EISSN: 10974652     Source Type: Journal    
DOI: 10.1002/jcp.25375     Document Type: Article
Times cited : (19)

References (32)
  • 1
    • 84929572600 scopus 로고    scopus 로고
    • Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae
    • Bao Z, Xiao H, Liang J, Zhang L, Xiong X, Sun N, Si T, Zhao H. 2014. Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synth Biol 4: 585–594.
    • (2014) ACS Synth Biol , vol.4 , pp. 585-594
    • Bao, Z.1    Xiao, H.2    Liang, J.3    Zhang, L.4    Xiong, X.5    Sun, N.6    Si, T.7    Zhao, H.8
  • 2
    • 81255197643 scopus 로고    scopus 로고
    • Yeast: An experimental organism for 21st century biology
    • Botstein D, Fink GR. 2011. Yeast: An experimental organism for 21st century biology. Genetics 189:695–704.
    • (2011) Genetics , vol.189 , pp. 695-704
    • Botstein, D.1    Fink, G.R.2
  • 4
    • 84929147435 scopus 로고    scopus 로고
    • Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells
    • Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kühn R. 2015. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33:543–548.
    • (2015) Nat Biotechnol , vol.33 , pp. 543-548
    • Chu, V.T.1    Weber, T.2    Wefers, B.3    Wurst, W.4    Sander, S.5    Rajewsky, K.6    Kühn, R.7
  • 6
    • 84875265625 scopus 로고    scopus 로고
    • Metabolic engineering of muconic acid production in Saccharomyces cerevisiae
    • Curran KA, Leavitt JM, Karim AS, Alper HS. 2013. Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metab Eng 15:55–66.
    • (2013) Metab Eng , vol.15 , pp. 55-66
    • Curran, K.A.1    Leavitt, J.M.2    Karim, A.S.3    Alper, H.S.4
  • 7
    • 80052022800 scopus 로고    scopus 로고
    • Increasing free-energy (ATP) conservation in maltose-grown Saccharomyces cerevisiae by expression of a heterologous maltose phosphorylase
    • de Kok S, Yilmaz D, Suir E, Pronk JT, Daran J-M, van Maris AJA. 2011. Increasing free-energy (ATP) conservation in maltose-grown Saccharomyces cerevisiae by expression of a heterologous maltose phosphorylase. Metab Eng 13:518–526.
    • (2011) Metab Eng , vol.13 , pp. 518-526
    • de Kok, S.1    Yilmaz, D.2    Suir, E.3    Pronk, J.T.4    Daran, J.-M.5    van Maris, A.J.A.6
  • 9
    • 85047289483 scopus 로고    scopus 로고
    • Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus
    • Fuller KK, Chen S, Loros JJ, Dunlap JC. 2015. Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus. Eukaryot Cell 14:1073–1080.
    • (2015) Eukaryot Cell , vol.14 , pp. 1073-1080
    • Fuller, K.K.1    Chen, S.2    Loros, J.J.3    Dunlap, J.C.4
  • 11
    • 84902096048 scopus 로고    scopus 로고
    • Development and applications of CRISPR-Cas9 for genome engineering
    • Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278.
    • (2014) Cell , vol.157 , pp. 1262-1278
    • Hsu, P.D.1    Lander, E.S.2    Zhang, F.3
  • 15
    • 84882788354 scopus 로고    scopus 로고
    • Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system
    • Jao L-E, Wente SR, Chen W. 2013. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci USA 110:13904–13909.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 13904-13909
    • Jao, L.-E.1    Wente, S.R.2    Chen, W.3
  • 16
    • 84865070369 scopus 로고    scopus 로고
    • A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
    • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821.
    • (2012) Science , vol.337 , pp. 816-821
    • Jinek, M.1    Chylinski, K.2    Fonfara, I.3    Hauer, M.4    Doudna, J.A.5    Charpentier, E.6
  • 17
    • 78649716727 scopus 로고    scopus 로고
    • Manufacturing molecules through metabolic engineering
    • Keasling JD. 2010. Manufacturing molecules through metabolic engineering. Science 330:1355–1358.
    • (2010) Science , vol.330 , pp. 1355-1358
    • Keasling, J.D.1
  • 18
    • 84898778301 scopus 로고    scopus 로고
    • A guide to genome engineering with programmable nucleases
    • Kim H, Kim J-S. 2014. A guide to genome engineering with programmable nucleases. Nat Rev Genet 15:321–334.
    • (2014) Nat Rev Genet , vol.15 , pp. 321-334
    • Kim, H.1    Kim, J.-S.2
  • 19
    • 84983792922 scopus 로고    scopus 로고
    • Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery
    • Lin S, Staahl BT, Alla RK, Doudna JA. 2014. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife 3:e04766.
    • (2014) eLife , vol.3
    • Lin, S.1    Staahl, B.T.2    Alla, R.K.3    Doudna, J.A.4
  • 20
    • 18044372415 scopus 로고    scopus 로고
    • Yeast as a model for medical and medicinal research
    • Mager WH, Winderickx J. 2005. Yeast as a model for medical and medicinal research. Trends Pharmacol Sci 26:265–273.
    • (2005) Trends Pharmacol Sci , vol.26 , pp. 265-273
    • Mager, W.H.1    Winderickx, J.2
  • 21
    • 84929166074 scopus 로고    scopus 로고
    • Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining
    • Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. 2015. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 33:538–542.
    • (2015) Nat Biotechnol , vol.33 , pp. 538-542
    • Maruyama, T.1    Dougan, S.K.2    Truttmann, M.C.3    Bilate, A.M.4    Ingram, J.R.5    Ploegh, H.L.6
  • 22
    • 0020689374 scopus 로고
    • [14] Genetic applications of yeast transformation with linear and gapped plasmids
    • In, Wu R, Grossman L, Moldave K, editors., New York, Academic Press
    • Orr-Weaver TL, Szostak JW, Rothstein RJ. 1983. [14] Genetic applications of yeast transformation with linear and gapped plasmids. In: Wu R, Grossman L, Moldave K, editors. Methods in Enzymology. New York: Academic Press. pp 228–245.
    • (1983) Methods in Enzymology , pp. 228-245
    • Orr-Weaver, T.L.1    Szostak, J.W.2    Rothstein, R.J.3
  • 24
    • 3142768860 scopus 로고    scopus 로고
    • Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells
    • Saleh-Gohari N, Helleday T. 2004. Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res 32:3683–3688.
    • (2004) Nucleic Acids Res , vol.32 , pp. 3683-3688
    • Saleh-Gohari, N.1    Helleday, T.2
  • 25
    • 84982876360 scopus 로고    scopus 로고
    • Synthetic RNA polymerase III promoters facilitate high-efficiency CRISPR–Cas9-mediated genome editing in Yarrowia lipolytica
    • [Epub ahead of print]
    • Schwartz CM, Hussain MS, Blenner M, Wheeldon I. 2015. Synthetic RNA polymerase III promoters facilitate high-efficiency CRISPR–Cas9-mediated genome editing in Yarrowia lipolytica. ACS Synth Biol. [Epub ahead of print].
    • (2015) ACS Synth Biol
    • Schwartz, C.M.1    Hussain, M.S.2    Blenner, M.3    Wheeldon, I.4
  • 27
    • 33745225170 scopus 로고    scopus 로고
    • The delitto perfetto approach to in vivo site-directed mutagenesis and chromosome rearrangements with synthetic oligonucleotides in yeast
    • Storici F, Resnick MA. 2006. The delitto perfetto approach to in vivo site-directed mutagenesis and chromosome rearrangements with synthetic oligonucleotides in yeast. Methods Enzymol 409:329–345.
    • (2006) Methods Enzymol , vol.409 , pp. 329-345
    • Storici, F.1    Resnick, M.A.2
  • 28
    • 80755187806 scopus 로고    scopus 로고
    • Double-strand break end resection and repair pathway choice
    • Symington LS, Gautier J. 2011. Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247–271.
    • (2011) Annu Rev Genet , vol.45 , pp. 247-271
    • Symington, L.S.1    Gautier, J.2
  • 29
    • 84940726919 scopus 로고    scopus 로고
    • A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families
    • Vyas VK, Barrasa MI, Fink GR. 2015. A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families. Sci Adv 1:e1500248.
    • (2015) Sci Adv , vol.1
    • Vyas, V.K.1    Barrasa, M.I.2    Fink, G.R.3
  • 30
    • 84877707375 scopus 로고    scopus 로고
    • One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering
    • Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918.
    • (2013) Cell , vol.153 , pp. 910-918
    • Wang, H.1    Yang, H.2    Shivalila, C.S.3    Dawlaty, M.M.4    Cheng, A.W.5    Zhang, F.6    Jaenisch, R.7
  • 31
    • 84870834865 scopus 로고    scopus 로고
    • Biosynthesis of cis, cis-Muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by saccharomyces cerevisiae
    • Weber C, Bruckner C, Weinreb S, Lehr C, Essl C, Boles E. 2012. Biosynthesis of cis, cis-Muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by saccharomyces cerevisiae. Appl Environ Microbiol 78:8421–8430.
    • (2012) Appl Environ Microbiol , vol.78 , pp. 8421-8430
    • Weber, C.1    Bruckner, C.2    Weinreb, S.3    Lehr, C.4    Essl, C.5    Boles, E.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.