-
1
-
-
84929572600
-
Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae
-
Bao Z, Xiao H, Liang J, Zhang L, Xiong X, Sun N, Si T, Zhao H. 2014. Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synth Biol 4: 585–594.
-
(2014)
ACS Synth Biol
, vol.4
, pp. 585-594
-
-
Bao, Z.1
Xiao, H.2
Liang, J.3
Zhang, L.4
Xiong, X.5
Sun, N.6
Si, T.7
Zhao, H.8
-
2
-
-
81255197643
-
Yeast: An experimental organism for 21st century biology
-
Botstein D, Fink GR. 2011. Yeast: An experimental organism for 21st century biology. Genetics 189:695–704.
-
(2011)
Genetics
, vol.189
, pp. 695-704
-
-
Botstein, D.1
Fink, G.R.2
-
3
-
-
0024197924
-
A gene-cloning system for Kluyveromyces lactis and isolation of a chromosomal gene required for killer toxin production
-
Chen XJ, Wésolowski-Louvel M, Tanguy-Rougeau C, Bianchi MM, Fabiani L, Saliola M, Falcone C, Frontali L, Fukuhara H. 1988. A gene-cloning system for Kluyveromyces lactis and isolation of a chromosomal gene required for killer toxin production. J Basic Microbiol 28:211–220.
-
(1988)
J Basic Microbiol
, vol.28
, pp. 211-220
-
-
Chen, X.J.1
Wésolowski-Louvel, M.2
Tanguy-Rougeau, C.3
Bianchi, M.M.4
Fabiani, L.5
Saliola, M.6
Falcone, C.7
Frontali, L.8
Fukuhara, H.9
-
4
-
-
84929147435
-
Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells
-
Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kühn R. 2015. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33:543–548.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 543-548
-
-
Chu, V.T.1
Weber, T.2
Wefers, B.3
Wurst, W.4
Sander, S.5
Rajewsky, K.6
Kühn, R.7
-
5
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823.
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
Lin, S.4
Barretto, R.5
Habib, N.6
Hsu, P.D.7
Wu, X.8
Jiang, W.9
Marraffini, L.A.10
-
6
-
-
84875265625
-
Metabolic engineering of muconic acid production in Saccharomyces cerevisiae
-
Curran KA, Leavitt JM, Karim AS, Alper HS. 2013. Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metab Eng 15:55–66.
-
(2013)
Metab Eng
, vol.15
, pp. 55-66
-
-
Curran, K.A.1
Leavitt, J.M.2
Karim, A.S.3
Alper, H.S.4
-
7
-
-
80052022800
-
Increasing free-energy (ATP) conservation in maltose-grown Saccharomyces cerevisiae by expression of a heterologous maltose phosphorylase
-
de Kok S, Yilmaz D, Suir E, Pronk JT, Daran J-M, van Maris AJA. 2011. Increasing free-energy (ATP) conservation in maltose-grown Saccharomyces cerevisiae by expression of a heterologous maltose phosphorylase. Metab Eng 13:518–526.
-
(2011)
Metab Eng
, vol.13
, pp. 518-526
-
-
de Kok, S.1
Yilmaz, D.2
Suir, E.3
Pronk, J.T.4
Daran, J.-M.5
van Maris, A.J.A.6
-
8
-
-
84876575031
-
Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
-
DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. 2013. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41:4336–4343.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 4336-4343
-
-
DiCarlo, J.E.1
Norville, J.E.2
Mali, P.3
Rios, X.4
Aach, J.5
Church, G.M.6
-
9
-
-
85047289483
-
Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus
-
Fuller KK, Chen S, Loros JJ, Dunlap JC. 2015. Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus. Eukaryot Cell 14:1073–1080.
-
(2015)
Eukaryot Cell
, vol.14
, pp. 1073-1080
-
-
Fuller, K.K.1
Chen, S.2
Loros, J.J.3
Dunlap, J.C.4
-
10
-
-
84935513637
-
Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas
-
Horwitz AA, Walter JM, Schubert MG, Kung SH, Hawkins K, Platt DM, Hernday AD, Mahatdejkul-Meadows T, Szeto W, Chandran SS, Newman JD. 2015. Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas. Cell Syst 1:88–96.
-
(2015)
Cell Syst
, vol.1
, pp. 88-96
-
-
Horwitz, A.A.1
Walter, J.M.2
Schubert, M.G.3
Kung, S.H.4
Hawkins, K.5
Platt, D.M.6
Hernday, A.D.7
Mahatdejkul-Meadows, T.8
Szeto, W.9
Chandran, S.S.10
Newman, J.D.11
-
11
-
-
84902096048
-
Development and applications of CRISPR-Cas9 for genome engineering
-
Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278.
-
(2014)
Cell
, vol.157
, pp. 1262-1278
-
-
Hsu, P.D.1
Lander, E.S.2
Zhang, F.3
-
12
-
-
84874617789
-
Efficient in vivo genome editing using RNA-guided nucleases
-
Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh J-RJ, Joung JK. 2013. Efficient in vivo genome editing using RNA-guided nucleases. Nat Biotechnol 31:227–229.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 227-229
-
-
Hwang, W.Y.1
Fu, Y.2
Reyon, D.3
Maeder, M.L.4
Tsai, S.Q.5
Sander, J.D.6
Peterson, R.T.7
Yeh, J.-R.J.8
Joung, J.K.9
-
14
-
-
84933569948
-
CasEMBLR: Cas9-facilitated multiloci genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae
-
Jakočiu̅nas T, Rajkumar AS, Zhang J, Arsovska D, Rodriguez A, Jendresen CB, Skjødt ML, Nielsen AT, Borodina I, Jensen MK, Keasling JD. 2015. CasEMBLR: Cas9-facilitated multiloci genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae. ACS Synth Biol 4:1226–1234.
-
(2015)
ACS Synth Biol
, vol.4
, pp. 1226-1234
-
-
Jakočiu̅nas, T.1
Rajkumar, A.S.2
Zhang, J.3
Arsovska, D.4
Rodriguez, A.5
Jendresen, C.B.6
Skjødt, M.L.7
Nielsen, A.T.8
Borodina, I.9
Jensen, M.K.10
Keasling, J.D.11
-
15
-
-
84882788354
-
Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system
-
Jao L-E, Wente SR, Chen W. 2013. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci USA 110:13904–13909.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 13904-13909
-
-
Jao, L.-E.1
Wente, S.R.2
Chen, W.3
-
16
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821.
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
17
-
-
78649716727
-
Manufacturing molecules through metabolic engineering
-
Keasling JD. 2010. Manufacturing molecules through metabolic engineering. Science 330:1355–1358.
-
(2010)
Science
, vol.330
, pp. 1355-1358
-
-
Keasling, J.D.1
-
18
-
-
84898778301
-
A guide to genome engineering with programmable nucleases
-
Kim H, Kim J-S. 2014. A guide to genome engineering with programmable nucleases. Nat Rev Genet 15:321–334.
-
(2014)
Nat Rev Genet
, vol.15
, pp. 321-334
-
-
Kim, H.1
Kim, J.-S.2
-
19
-
-
84983792922
-
Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery
-
Lin S, Staahl BT, Alla RK, Doudna JA. 2014. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife 3:e04766.
-
(2014)
eLife
, vol.3
-
-
Lin, S.1
Staahl, B.T.2
Alla, R.K.3
Doudna, J.A.4
-
20
-
-
18044372415
-
Yeast as a model for medical and medicinal research
-
Mager WH, Winderickx J. 2005. Yeast as a model for medical and medicinal research. Trends Pharmacol Sci 26:265–273.
-
(2005)
Trends Pharmacol Sci
, vol.26
, pp. 265-273
-
-
Mager, W.H.1
Winderickx, J.2
-
21
-
-
84929166074
-
Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining
-
Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. 2015. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 33:538–542.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 538-542
-
-
Maruyama, T.1
Dougan, S.K.2
Truttmann, M.C.3
Bilate, A.M.4
Ingram, J.R.5
Ploegh, H.L.6
-
22
-
-
0020689374
-
[14] Genetic applications of yeast transformation with linear and gapped plasmids
-
In, Wu R, Grossman L, Moldave K, editors., New York, Academic Press
-
Orr-Weaver TL, Szostak JW, Rothstein RJ. 1983. [14] Genetic applications of yeast transformation with linear and gapped plasmids. In: Wu R, Grossman L, Moldave K, editors. Methods in Enzymology. New York: Academic Press. pp 228–245.
-
(1983)
Methods in Enzymology
, pp. 228-245
-
-
Orr-Weaver, T.L.1
Szostak, J.W.2
Rothstein, R.J.3
-
23
-
-
84911871184
-
Selection of chromosomal DNA libraries using a multiplex CRISPR system
-
Ryan OW, Skerker JM, Maurer MJ, Li X, Tsai JC, Poddar S, Lee ME, Loache De, DeLoache W, Dueber JE, Arkin, AP, Cate JHD. 2014. Selection of chromosomal DNA libraries using a multiplex CRISPR system. eLife 3:e03703.
-
(2014)
eLife
, vol.3
-
-
Ryan, O.W.1
Skerker, J.M.2
Maurer, M.J.3
Li, X.4
Tsai, J.C.5
Poddar, S.6
Lee, M.E.7
Loache, D.8
DeLoache, W.9
Dueber, J.E.10
Arkin, A.P.11
Cate, J.H.D.12
-
24
-
-
3142768860
-
Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells
-
Saleh-Gohari N, Helleday T. 2004. Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res 32:3683–3688.
-
(2004)
Nucleic Acids Res
, vol.32
, pp. 3683-3688
-
-
Saleh-Gohari, N.1
Helleday, T.2
-
25
-
-
84982876360
-
Synthetic RNA polymerase III promoters facilitate high-efficiency CRISPR–Cas9-mediated genome editing in Yarrowia lipolytica
-
[Epub ahead of print]
-
Schwartz CM, Hussain MS, Blenner M, Wheeldon I. 2015. Synthetic RNA polymerase III promoters facilitate high-efficiency CRISPR–Cas9-mediated genome editing in Yarrowia lipolytica. ACS Synth Biol. [Epub ahead of print].
-
(2015)
ACS Synth Biol
-
-
Schwartz, C.M.1
Hussain, M.S.2
Blenner, M.3
Wheeldon, I.4
-
26
-
-
84937113840
-
Low-cost, high-throughput sequencing of dna assemblies using a highly multiplexed nextera process
-
Shapland EB, Holmes V, Reeves CD, Sorokin E, Durot M, Platt D, Allen C, Dean J, Serber Z, Newman J, Chandran SS. 2015. Low-cost, high-throughput sequencing of dna assemblies using a highly multiplexed nextera process. ACS Synth Biol 4:860–866.
-
(2015)
ACS Synth Biol
, vol.4
, pp. 860-866
-
-
Shapland, E.B.1
Holmes, V.2
Reeves, C.D.3
Sorokin, E.4
Durot, M.5
Platt, D.6
Allen, C.7
Dean, J.8
Serber, Z.9
Newman, J.10
Chandran, S.S.11
-
27
-
-
33745225170
-
The delitto perfetto approach to in vivo site-directed mutagenesis and chromosome rearrangements with synthetic oligonucleotides in yeast
-
Storici F, Resnick MA. 2006. The delitto perfetto approach to in vivo site-directed mutagenesis and chromosome rearrangements with synthetic oligonucleotides in yeast. Methods Enzymol 409:329–345.
-
(2006)
Methods Enzymol
, vol.409
, pp. 329-345
-
-
Storici, F.1
Resnick, M.A.2
-
28
-
-
80755187806
-
Double-strand break end resection and repair pathway choice
-
Symington LS, Gautier J. 2011. Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247–271.
-
(2011)
Annu Rev Genet
, vol.45
, pp. 247-271
-
-
Symington, L.S.1
Gautier, J.2
-
29
-
-
84940726919
-
A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families
-
Vyas VK, Barrasa MI, Fink GR. 2015. A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families. Sci Adv 1:e1500248.
-
(2015)
Sci Adv
, vol.1
-
-
Vyas, V.K.1
Barrasa, M.I.2
Fink, G.R.3
-
30
-
-
84877707375
-
One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering
-
Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918.
-
(2013)
Cell
, vol.153
, pp. 910-918
-
-
Wang, H.1
Yang, H.2
Shivalila, C.S.3
Dawlaty, M.M.4
Cheng, A.W.5
Zhang, F.6
Jaenisch, R.7
-
31
-
-
84870834865
-
Biosynthesis of cis, cis-Muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by saccharomyces cerevisiae
-
Weber C, Bruckner C, Weinreb S, Lehr C, Essl C, Boles E. 2012. Biosynthesis of cis, cis-Muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by saccharomyces cerevisiae. Appl Environ Microbiol 78:8421–8430.
-
(2012)
Appl Environ Microbiol
, vol.78
, pp. 8421-8430
-
-
Weber, C.1
Bruckner, C.2
Weinreb, S.3
Lehr, C.4
Essl, C.5
Boles, E.6
-
32
-
-
84975298437
-
Genotype specification language
-
[Epub ahead of print]
-
Wilson EH, Sagawa S, Weis JW, Schubert MG, Bissell M, Hawthorne B, Reeves CD, Dean J, Platt D. 2016. Genotype specification language. ACS Synth Biol. [Epub ahead of print].
-
(2016)
ACS Synth Biol
-
-
Wilson, E.H.1
Sagawa, S.2
Weis, J.W.3
Schubert, M.G.4
Bissell, M.5
Hawthorne, B.6
Reeves, C.D.7
Dean, J.8
Platt, D.9
|