-
1
-
-
33645712892
-
Compressed sensing
-
D. L. Donoho, "Compressed sensing," IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289-1306, 2006.
-
(2006)
IEEE Trans. Inf. Theory
, vol.52
, Issue.4
, pp. 1289-1306
-
-
Donoho, D.L.1
-
2
-
-
31744440684
-
Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
-
DOI 10.1109/TIT.2005.862083
-
E. J. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489-509, Feb. 2006. (Pubitemid 43174093)
-
(2006)
IEEE Transactions on Information Theory
, vol.52
, Issue.2
, pp. 489-509
-
-
Candes, E.J.1
Romberg, J.2
Tao, T.3
-
3
-
-
85032751965
-
Compressive sensing
-
Jul.
-
R. G. Baraniuk, "Compressive sensing," IEEE Signal Process. Mag., vol. 24, no. 4, pp. 118-124, Jul. 2007.
-
(2007)
IEEE Signal Process. Mag.
, vol.24
, Issue.4
, pp. 118-124
-
-
Baraniuk, R.G.1
-
5
-
-
0031102203
-
Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm
-
I. F. Gorodnitsky and B. D. Rao, "Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm," IEEE Trans. Signal Process., vol. 45, no. 3, pp. 600-616, Mar. 1997. (Pubitemid 127765947)
-
(1997)
IEEE Transactions on Signal Processing
, vol.45
, Issue.3
, pp. 600-616
-
-
Gorodnitsky, I.F.1
Rao, B.D.2
-
6
-
-
0037418225
-
1 minimization
-
DOI 10.1073/pnas.0437847100
-
D. L. Donoho and M. Elad, "Optimally sparse representation in general (nonorthogonal) dictionaries via minimization," PNAS, vol. 100, no. 5, pp. 2197-2202, 2003. (Pubitemid 36297476)
-
(2003)
Proceedings of the National Academy of Sciences of the United States of America
, vol.100
, Issue.5
, pp. 2197-2202
-
-
Donoho, D.L.1
Elad, M.2
-
7
-
-
0028805010
-
Neuromagnetic source imaging with FOCUSS: A recursive weighted minimum norm algorithm
-
I. F. Gorodnitsky, J. S. George, and B. D. Rao, "Neuromagnetic source imaging with FOCUSS: A recursive weighted minimum norm algorithm," Electroencephalogr. Clinical Neurophysiol., vol. 95, pp. 231-251, 1995.
-
(1995)
Electroencephalogr. Clinical Neurophysiol.
, vol.95
, pp. 231-251
-
-
Gorodnitsky, I.F.1
George, J.S.2
Rao, B.D.3
-
8
-
-
25444450079
-
A sparse signal reconstruction perspective for source localization with sensor arrays
-
DOI 10.1109/TSP.2005.850882
-
D. Malioutov, M. Cetin, and A. S. Willsky, "A sparse signal reconstruction perspective for source localization with sensor arrays," IEEE Trans. Signal Process., vol. 53, no. 8, pp. 3010-3022, Aug. 2005. (Pubitemid 41372811)
-
(2005)
IEEE Transactions on Signal Processing
, vol.53
, Issue.8
, pp. 3010-3022
-
-
Malioutov, D.1
Cetin, M.2
Willsky, A.S.3
-
9
-
-
75249100769
-
On compressive sensing applied to radar
-
J. H. G. Ender, "On compressive sensing applied to radar," Signal Process., vol. 90, pp. 1402-1414, 2010.
-
(2010)
Signal Process.
, vol.90
, pp. 1402-1414
-
-
Ender, J.H.G.1
-
10
-
-
38949134498
-
Compressed sensing in dynamic MRI
-
DOI 10.1002/mrm.21477
-
U. Gamper, P. Boesiger, and S. Kozerke, "Compressed sensing in dynamic MRI," Magn. Reson. in Med., vol. 59, pp. 365-373, 2008. (Pubitemid 351220100)
-
(2008)
Magnetic Resonance in Medicine
, vol.59
, Issue.2
, pp. 365-373
-
-
Gamper, U.1
Boesiger, P.2
Kozerke, S.3
-
11
-
-
0043170658
-
Sparse solutions to linear inverse problems with multiple measurement vectors
-
Bryce Canyon, UT
-
B. D. Rao and K. Kreutz-Delgado, "Sparse solutions to linear inverse problems with multiple measurement vectors," in Proc. IEEE Digital Signal Processing Workshop, Bryce Canyon, UT, 1998.
-
(1998)
Proc. IEEE Digital Signal Processing Workshop
-
-
Rao, B.D.1
Kreutz-Delgado, K.2
-
12
-
-
23844477225
-
Sparse solutions to linear inverse problems with multiple measurement vectors
-
DOI 10.1109/TSP.2005.849172
-
S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-Delgado, "Sparse solutions to linear inverse problems with multiple measurement vectors," IEEE Trans. Signal Process., vol. 53, no. 7, pp. 2477-2488, Jul. 2005. (Pubitemid 41174440)
-
(2005)
IEEE Transactions on Signal Processing
, vol.53
, Issue.7
, pp. 2477-2488
-
-
Cotter, S.F.1
Rao, B.D.2
Engan, K.3
Kreutz-Delgado, K.4
-
13
-
-
70350743173
-
Robust recovery of signals from a structuredunion of subspaces
-
Nov.
-
Y. C. Eldar and M. Mishali, "Robust recovery of signals from a structured union of subspaces," IEEE Trans. Inf. Theory, vol. 55, no. 11, pp. 5302-5316, Nov. 2009.
-
(2009)
IEEE Trans. Inf. Theory
, vol.55
, Issue.11
, pp. 5302-5316
-
-
Eldar, Y.C.1
Mishali, M.2
-
14
-
-
73849109362
-
Average case analysis of multichannel sparse recovery using convex relaxation
-
Jan
-
Y. C. Eldar and H. Rauhut, "Average case analysis of multichannel sparse recovery using convex relaxation," IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 505-519, Jan. 2010.
-
(2010)
IEEE Trans. Inf. Theory
, vol.56
, Issue.1
, pp. 505-519
-
-
Eldar, Y.C.1
Rauhut, H.2
-
15
-
-
51449116423
-
Insights into the stable recovery of sparse solutions in overcomplete representations using network information theory
-
Las Vegas, NV
-
Y. Jin and B. D. Rao, "Insights into the stable recovery of sparse solutions in overcomplete representations using network information theory," in Proc. 33th Int. Conf. Acoust., Speech, Signal Process. (ICASSP'08), Las Vegas, NV, pp. 3921-3924.
-
Proc. 33th Int. Conf. Acoust., Speech, Signal Process. (ICASSP'08)
, pp. 3921-3924
-
-
Jin, Y.1
Rao, B.D.2
-
16
-
-
77949499138
-
Performance analysis for sparse support recovery
-
Mar.
-
G. Tang and A. Nehorai, "Performance analysis for sparse support recovery," IEEE Trans. Inf. Theory, vol. 56, no. 3, pp. 1383-1399, Mar. 2010.
-
(2010)
IEEE Trans. Inf. Theory
, vol.56
, Issue.3
, pp. 1383-1399
-
-
Tang, G.1
Nehorai, A.2
-
17
-
-
79957984358
-
On the role of the properties of the nonzero entries on sparse signal recovery
-
Y. Jin and B. D. Rao, "On the role of the properties of the nonzero entries on sparse signal recovery," in Proc. 44th Asilomar Conf. Signals, Syst., Comput., 2010, pp. 753-757.
-
(2010)
Proc. 44th Asilomar Conf. Signals, Syst., Comput.
, pp. 753-757
-
-
Jin, Y.1
Rao, B.D.2
-
18
-
-
84933524954
-
-
1st ed. Cambridge, U.K.: Cambridge Univ. Press
-
C. M. Michel et al., Electrical Neuroimaging, 1st ed. Cambridge, U.K.: Cambridge Univ. Press, 2009.
-
(2009)
Electrical Neuroimaging
-
-
Michel, C.M.1
-
19
-
-
84863741085
-
Multiple snapshot matching pursuit for direction of arrival (DOA) estimation
-
Poznan, Poland
-
S. F. Cotter, "Multiple snapshot matching pursuit for direction of arrival (DOA) estimation," in Proc. 15th Eur. Signal Process. Conf. (EUSIPCO' 07), Poznan, Poland, 2007.
-
(2007)
Proc. 15th Eur. Signal Process. Conf. (EUSIPCO' 07)
-
-
Cotter, S.F.1
-
20
-
-
30844445842
-
Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit
-
DOI 10.1016/j.sigpro.2005.05.030, PII S0165168405002227, Sparse Approximations in Signal and Image Processing
-
J. A. Tropp, A. C. Gilbert, and M. J. Strauss, "Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit," Signal Process., vol. 86, pp. 572-588, 2006. (Pubitemid 43106572)
-
(2006)
Signal Processing
, vol.86
, Issue.3
, pp. 572-588
-
-
Tropp, J.A.1
Gilbert, A.C.2
Strauss, M.J.3
-
22
-
-
79957634445
-
Simultaneous support recovery in high dimensions: Benefits and perils of block-regularization
-
Jun
-
S. Negahban and M. J.Wainwright, "Simultaneous support recovery in high dimensions: Benefits and perils of block-regularization," IEEE Trans. Inf. Theory, vol. 57, no. 6, pp. 3841-3863, Jun. 2011.
-
(2011)
IEEE Trans. Inf. Theory
, vol.57
, Issue.6
, pp. 3841-3863
-
-
Negahban, S.1
Wainwright, M.J.2
-
23
-
-
30844461481
-
Algorithms for simultaneous sparse approximation. Part II: Convex relaxation
-
DOI 10.1016/j.sigpro.2005.05.031, PII S0165168405002239, Sparse Approximations in Signal and Image Processing
-
J. A. Tropp, "Algorithms for simultaneous sparse approximation. Part II: Convex relaxation," Signal Process., vol. 86, pp. 589-602, 2006. (Pubitemid 43106573)
-
(2006)
Signal Processing
, vol.86
, Issue.3
, pp. 589-602
-
-
Tropp, J.A.1
-
24
-
-
46249088758
-
Consistency of the group lasso and multiple kernel learning
-
F. R. Bach, "Consistency of the group lasso and multiple kernel learning," J. Mach. Learn. Res., vol. 9, pp. 1179-1225, 2008.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 1179-1225
-
-
Bach, F.R.1
-
25
-
-
77949736709
-
Iterative reweighted-and-methods for finding sparse solutions
-
Apr
-
D.Wipf and S. Nagarajan, "Iterative reweighted-and-methods for finding sparse solutions," IEEE J. Sel. Topics Signal Process., vol. 4, no. 2, pp. 317-329, Apr. 2010.
-
(2010)
IEEE J. Sel. Topics Signal Process.
, vol.4
, Issue.2
, pp. 317-329
-
-
Wipf, D.1
Nagarajan, S.2
-
26
-
-
34347400802
-
An empirical Bayesian strategy for solving the simultaneous sparse approximation problem
-
DOI 10.1109/TSP.2007.894265
-
D. P.Wipf and B. D. Rao, "An empirical Bayesian strategy for solving the simultaneous sparse approximation problem," IEEE Trans. Signal Process., vol. 55, no. 7, pp. 3704-3716, Jul. 2007. (Pubitemid 47018850)
-
(2007)
IEEE Transactions on Signal Processing
, vol.55
, Issue.7
, pp. 3704-3716
-
-
Wipf, D.P.1
Rao, B.D.2
-
27
-
-
80052373749
-
Latent variable Bayesian models for promoting sparsity
-
to be published
-
D. Wipf, B. D. Rao, and S. Nagarajan, "Latent variable Bayesian models for promoting sparsity," IEEE Trans. Inf. Theory, 2010, to be published.
-
(2010)
IEEE Trans. Inf. Theory
-
-
Wipf, D.1
Rao, B.D.2
Nagarajan, S.3
-
28
-
-
0001224048
-
Sparse Bayesian Learning and the Relevance Vector Machine
-
DOI 10.1162/15324430152748236
-
M. E. Tipping, "Sparse Bayesian learning and the relevance vector machine," J. Mach. Learn. Res., vol. 1, pp. 211-244, 2001. (Pubitemid 33687203)
-
(2001)
Journal of Machine Learning Research
, vol.1
, Issue.3
, pp. 211-244
-
-
Tipping, M.E.1
-
30
-
-
3543103176
-
Sparse Bayesian learning for basis selection
-
Aug.
-
D. P. Wipf and B. D. Rao, "Sparse Bayesian learning for basis selection," IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2153-2164, Aug. 2004.
-
(2004)
IEEE Trans. Signal Process.
, vol.52
, Issue.8
, pp. 2153-2164
-
-
Wipf, D.P.1
Rao, B.D.2
-
31
-
-
78049372052
-
Sparse signal recovery in the presence of correlated multiple measurement vectors
-
Dallas, TX
-
Z. Zhang and B. D. Rao, "Sparse signal recovery in the presence of correlated multiple measurement vectors," in Proc. 35th Int. Conf. Acoust., Speech, Signal Process. (ICASSP 2010), Dallas, TX, 2010, pp. 3986-3989.
-
(2010)
Proc. 35th Int. Conf. Acoust., Speech, Signal Process. (ICASSP 2010)
, pp. 3986-3989
-
-
Zhang, Z.1
Rao, B.D.2
-
32
-
-
80051628097
-
Iterative reweighted algorithms for sparse signal recovery with temporally correlated source vectors
-
Prague, The Czech Republic
-
Z. Zhang and B. D. Rao, "Iterative reweighted algorithms for sparse signal recovery with temporally correlated source vectors," in Proc. 36th Int. Conf. Acoust., Speech, Signal Process. (ICASSP'11), Prague, The Czech Republic, 2011.
-
(2011)
Proc. 36th Int. Conf. Acoust., Speech, Signal Process. (ICASSP'11)
-
-
Zhang, Z.1
Rao, B.D.2
-
33
-
-
84877701671
-
Exploiting correlation in sparse signal recovery problems: Multiple measurement vectors, block sparsity, and time-varying sparsity
-
Washington DC
-
Z. Zhang and B. D. Rao, "Exploiting correlation in sparse signal recovery problems: Multiple measurement vectors, block sparsity, and time-varying sparsity," in Proc. ICML'11 Workshop Structured Sparsity: Learning and Inference, Washington, DC, 2011.
-
(2011)
Proc. ICML'11 Workshop Structured Sparsity: Learning and Inference
-
-
Zhang, Z.1
Rao, B.D.2
-
34
-
-
77952572987
-
Variance-component based sparse signal reconstruction and model selection
-
Jun
-
K. Qiu and A. Dogandzic, "Variance-component based sparse signal reconstruction and model selection," IEEE Trans. Signal Process., vol. 58, no. 6, pp. 2935-2952, Jun. 2010.
-
(2010)
IEEE Trans. Signal Process.
, vol.58
, Issue.6
, pp. 2935-2952
-
-
Qiu, K.1
Dogandzic, A.2
-
35
-
-
44849087307
-
Bayesian compressive sensing
-
DOI 10.1109/TSP.2007.914345
-
S. Ji, Y. Xue, and L. Carin, "Bayesian compressive sensing," IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2346-2356, Jun. 2008. (Pubitemid 351795888)
-
(2008)
IEEE Transactions on Signal Processing
, vol.56
, Issue.6
, pp. 2346-2356
-
-
Ji, S.1
Xue, Y.2
Carin, L.3
-
36
-
-
78049368442
-
Multiple-measurement Bayesian compressed sensing using GSM priors for DOA estimation
-
Dallas, TX
-
G. Tzagkarakis, D. Milioris, and P. Tsakalides, "Multiple- measurement Bayesian compressed sensing using GSM priors for DOA estimation," in Proc. 35th Int. Conf. Acoust., Speech, Signal Process. (ICASSP 2010), Dallas, TX, 2010, pp. 2610-2613.
-
(2010)
Proc. 35th Int. Conf. Acoust., Speech, Signal Process. (ICASSP 2010)
, pp. 2610-2613
-
-
Tzagkarakis, G.1
Milioris, D.2
Tsakalides, P.3
-
37
-
-
0001287271
-
Regression shrinkage and selection via the Lasso
-
R. Tibshirani, "Regression shrinkage and selection via the Lasso," J. R. Statist. Soc. B, vol. 58, no. 1, pp. 267-288, 1996.
-
(1996)
J. R. Statist. Soc. B
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
38
-
-
0032131292
-
Atomic decomposition by basis pursuit
-
PII S1064827596304010
-
S. S. Chen, D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM J. Sci. Comput., vol. 20, no. 1, pp. 33-61, 1998. (Pubitemid 128689501)
-
(1998)
SIAM Journal of Scientific Computing
, vol.20
, Issue.1
, pp. 33-61
-
-
Chen, S.S.1
Donoho, D.L.2
Saunders, M.A.3
-
39
-
-
57349174008
-
Enhancing sparsity by reweighted-minimization
-
E. J. Candes, M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by reweighted-minimization," J. Fourier Anal. Appl., vol. 14, pp. 877-905, 2008.
-
(2008)
J. Fourier Anal. Appl.
, vol.14
, pp. 877-905
-
-
Candes, E.J.1
Wakin, M.B.2
Boyd, S.P.3
-
40
-
-
77950244328
-
Model-based compressive sensing
-
Apr
-
R. G. Baraniuk, V. Cevher,M. F. Duarte, and C. Hegde, "Model-based compressive sensing," IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 1982-2001, Apr. 2010.
-
(2010)
IEEE Trans. Inf. Theory
, vol.56
, Issue.4
, pp. 1982-2001
-
-
Baraniuk, R.G.1
Cevher, V.2
Duarte, M.F.3
Hegde, C.4
-
41
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
DOI 10.1111/j.1467-9868.2005.00532.x
-
M. Yuan and Y. Lin, "Model selection and estimation in regression with grouped variables," J. R. Statist. Soc. B, vol. 68, pp. 49-67, 2006. (Pubitemid 43415335)
-
(2006)
Journal of the Royal Statistical Society. Series B: Statistical Methodology
, vol.68
, Issue.1
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
-
42
-
-
69949155103
-
The composite absolute penalties family for grouped and hierarchical variable selection
-
P. Zhao, G. Rocha, and B. Yu, "The composite absolute penalties family for grouped and hierarchical variable selection," Ann. Statist., vol. 37, no. 6A, pp. 3468-3497, 2009.
-
(2009)
Ann. Statist.
, vol.37
, Issue.6 A
, pp. 3468-3497
-
-
Zhao, P.1
Rocha, G.2
Yu, B.3
-
43
-
-
53149137084
-
Improved M-FOCUSS algorithm with overlapping blocks for locally smooth sparse signals
-
Oct.
-
R. Zdunek and A. Cichocki, "Improved M-FOCUSS algorithm with overlapping blocks for locally smooth sparse signals," IEEE Trans. Signal Process., vol. 56, no. 10, pp. 4752-4761, Oct. 2008.
-
(2008)
IEEE Trans. Signal Process.
, vol.56
, Issue.10
, pp. 4752-4761
-
-
Zdunek, R.1
Cichocki, A.2
-
44
-
-
70049088514
-
Sparse decomposition of mixed audio signals by basis pursuit with autoregressive models
-
Taipei
-
Y. Cho and L. K. Saul, "Sparse decomposition of mixed audio signals by basis pursuit with autoregressive models," in Proc. 34th Int. Conf. Acoust., Speech, Signal Process. (ICASSP'09), Taipei, pp. 1705-1708.
-
Proc. 34th Int. Conf. Acoust., Speech, Signal Process. (ICASSP'09)
, pp. 1705-1708
-
-
Cho, Y.1
Saul, L.K.2
-
45
-
-
57349101724
-
Optimal approximation of signal priors
-
A. Hyvärinen, "Optimal approximation of signal priors," Neural Comput., vol. 20, no. 12, pp. 3087-3110, 2008.
-
(2008)
Neural Comput.
, vol.20
, Issue.12
, pp. 3087-3110
-
-
Hyvärinen, A.1
-
46
-
-
34247558132
-
Preventing over-fitting during model selection via bayesian regularisation of the hyper-parameters
-
G. C. Cawley and N. L. C. Talbot, "Preventing over-fitting during model selection via Bayesian regularization of the hyper-parameters," J. Mach. Learn. Res., vol. 8, pp. 841-861, 2007. (Pubitemid 46677044)
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 841-861
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
47
-
-
76749118521
-
Model selection: Beyond the Bayesian/frequentist divide
-
I. Guyon, A. Saffari, G. Dror, and G. Cawley, "Model selection: Beyond the Bayesian/frequentist divide," J. Mach. Learn. Res., vol. 11, pp. 61-87, 2010.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 61-87
-
-
Guyon, I.1
Saffari, A.2
Dror, G.3
Cawley, G.4
-
48
-
-
33645744108
-
Sparse representations are most likely to be the sparsest possible
-
M. Elad, "Sparse representations are most likely to be the sparsest possible," EUROSIP J. Appl. Signal Process., vol. 2006, pp. 1-12, 2006.
-
(2006)
EUROSIP J. Appl. Signal Process.
, vol.2006
, pp. 1-12
-
-
Elad, M.1
-
52
-
-
70349592947
-
A robust algorithm for joint-sparse recovery
-
Dec.
-
M. M. Hyder and K. Mahata, "A robust algorithm for joint-sparse recovery," IEEE Signal Process. Lett., vol. 16, no. 12, pp. 1091-1094, Dec. 2009.
-
(2009)
IEEE Signal Process. Lett.
, vol.16
, Issue.12
, pp. 1091-1094
-
-
Hyder, M.M.1
Mahata, K.2
-
53
-
-
70349962981
-
Robust Bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG
-
D. Wipf et al., "Robust Bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG," NeuroImage, vol. 49, pp. 641-655, 2010.
-
(2010)
NeuroImage
, vol.49
, pp. 641-655
-
-
Wipf, D.1
-
54
-
-
85161974668
-
A new view of automatic relevance determination
-
J. Platt, D. Koller, Y. Singer, and S. Roweis, Eds. Cambridge, MA: MIT Press
-
D. Wipf and S. Nagarajan, "A new view of automatic relevance determination," in Advances in Neural Information Processing Systems, J. Platt, D. Koller, Y. Singer, and S. Roweis, Eds. Cambridge, MA: MIT Press, 2008, vol. 20, pp. 1625-1632.
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
, pp. 1625-1632
-
-
Wipf, D.1
Nagarajan, S.2
-
55
-
-
0037333986
-
Subset selection in noise based on diversity measure minimization
-
Mar.
-
B. D. Rao, K. Engan, S. F. Cotter, J. Palmer, and K. Kreutz-Delgado, "Subset selection in noise based on diversity measure minimization," IEEE Trans. Signal Process., vol. 51, no. 3, pp. 760-770, Mar. 2003.
-
(2003)
IEEE Trans. Signal Process.
, vol.51
, Issue.3
, pp. 760-770
-
-
Rao, B.D.1
Engan, K.2
Cotter, S.F.3
Palmer, J.4
Kreutz-Delgado, K.5
-
56
-
-
79551550744
-
NESTA: A fast and accurate first-order method for sparse recovery
-
S. Becker, J. Bobin, and E. J. Candes, "NESTA: A fast and accurate first-order method for sparse recovery," SIAM J. Imag. Sci., vol. 4, no. 1, pp. 1-39, 2011.
-
(2011)
SIAM J. Imag. Sci.
, vol.4
, Issue.1
, pp. 1-39
-
-
Becker, S.1
Bobin, J.2
Candes, E.J.3
-
57
-
-
53349163971
-
-
Rice Univ. Houston TX CAAM Technical Report TR07-07
-
E. T. Hale, W. Yin, and Y. Zhang, A fixed-point continuation method for regularized minimization with applications to compressed sensing Rice Univ., Houston, TX, 2007, CAAM Technical Report TR07-07.
-
(2007)
A Fixed-point Continuation Method for Regularized Minimization with Applications to Compressed Sensing
-
-
Hale, E.T.1
Yin, W.2
Zhang, Y.3
-
58
-
-
61549128441
-
Robust face recognition via sparse representation
-
Feb.
-
J. Wright et al., "Robust face recognition via sparse representation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 2, pp. 210-227, Feb. 2009.
-
(2009)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.31
, Issue.2
, pp. 210-227
-
-
Wright, J.1
-
59
-
-
77952576986
-
Block-sparse signals: Uncertainty relations and efficient recovery
-
Jun
-
Y. C. Eldar, P. Kuppinger, and H. Bolcskei, "Block-sparse signals: Uncertainty relations and efficient recovery," IEEE Trans. Signal Process., vol. 58, no. 6, pp. 3042-3054, Jun. 2010.
-
(2010)
IEEE Trans. Signal Process.
, vol.58
, Issue.6
, pp. 3042-3054
-
-
Eldar, Y.C.1
Kuppinger, P.2
Bolcskei, H.3
-
61
-
-
79958006379
-
Tracking and smoothing of time-varying sparse signals via approximate belief propagation
-
J. Ziniel, L. C. Potter, and P. Schniter, "Tracking and smoothing of time-varying sparse signals via approximate belief propagation," in Proc. 44th Asilomar Conf. Signals, Syst., Comput., 2010, pp. 808-812.
-
(2010)
Proc. 44th Asilomar Conf. Signals, Syst., Comput.
, pp. 808-812
-
-
Ziniel, J.1
Potter, L.C.2
Schniter, P.3
|