메뉴 건너뛰기




Volumn 123, Issue 9, 2016, Pages 1974-1980

Detecting Preperimetric Glaucoma with Standard Automated Perimetry Using a Deep Learning Classifier

Author keywords

[No Author keywords available]

Indexed keywords

ADULT; ARTICLE; ARTIFICIAL NEURAL NETWORK; CLASSIFIER; COHORT ANALYSIS; CONTROLLED STUDY; DEEP LEARNING CLASSIFIER; DIAGNOSTIC ACCURACY; DIAGNOSTIC TEST ACCURACY STUDY; DIAGNOSTIC VALUE; FEMALE; GRADIENT BOOSTING; HUMAN; HUMPHREY PERIMETER; INTERMETHOD COMPARISON; MACHINE LEARNING; MAJOR CLINICAL STUDY; MALE; MIDDLE AGED; OPEN ANGLE GLAUCOMA; PERIMETRY; PRIORITY JOURNAL; RANDOM FOREST; SENSITIVITY AND SPECIFICITY; SUPPORT VECTOR MACHINE; VISUAL FIELD; AGED; AREA UNDER THE CURVE; CASE CONTROL STUDY; GLAUCOMA, OPEN-ANGLE; OPTIC NERVE DISEASES; OPTICAL COHERENCE TOMOGRAPHY; PATHOPHYSIOLOGY; PHYSIOLOGY; PROCEDURES; RECEIVER OPERATING CHARACTERISTIC; VISION DISORDERS;

EID: 84982243237     PISSN: 01616420     EISSN: 15494713     Source Type: Journal    
DOI: 10.1016/j.ophtha.2016.05.029     Document Type: Article
Times cited : (211)

References (47)
  • 1
    • 0004151004 scopus 로고    scopus 로고
    • Automated Static Perimetry
    • 2nd ed Mosby St. Louis
    • 1 Anderson, D.R., Patella, V.M., Automated Static Perimetry. 2nd ed, 1999, Mosby, St. Louis.
    • (1999)
    • Anderson, D.R.1    Patella, V.M.2
  • 2
    • 34250624878 scopus 로고    scopus 로고
    • Can frequency-doubling technology and short-wavelength automated perimetries detect visual field defects before standard automated perimetry in patients with preperimetric glaucoma?
    • 2 Ferreras, A., Polo, V., Larrosa, J.M., et al. Can frequency-doubling technology and short-wavelength automated perimetries detect visual field defects before standard automated perimetry in patients with preperimetric glaucoma?. J Glaucoma 16 (2007), 372–383.
    • (2007) J Glaucoma , vol.16 , pp. 372-383
    • Ferreras, A.1    Polo, V.2    Larrosa, J.M.3
  • 3
    • 59449090562 scopus 로고    scopus 로고
    • Interpretation of the Humphrey Matrix 24-2 test in the diagnosis of preperimetric glaucoma
    • 3 Choi, J.A., Lee, N.Y., Park, C.K., Interpretation of the Humphrey Matrix 24-2 test in the diagnosis of preperimetric glaucoma. Jpn J Ophthalmol 53 (2009), 24–30.
    • (2009) Jpn J Ophthalmol , vol.53 , pp. 24-30
    • Choi, J.A.1    Lee, N.Y.2    Park, C.K.3
  • 4
    • 84872335566 scopus 로고    scopus 로고
    • Frequency-doubling technology and retinal measurements with spectral-domain optical coherence tomography in preperimetric glaucoma
    • 4 Hirashima, T., Hangai, M., Nukada, M., et al. Frequency-doubling technology and retinal measurements with spectral-domain optical coherence tomography in preperimetric glaucoma. Graefes Arch Clin Exp Ophthalmol 251 (2013), 129–137.
    • (2013) Graefes Arch Clin Exp Ophthalmol , vol.251 , pp. 129-137
    • Hirashima, T.1    Hangai, M.2    Nukada, M.3
  • 5
    • 84902260658 scopus 로고    scopus 로고
    • Diagnostic ability of spectral-domain versus time-domain optical coherence tomography in preperimetric glaucoma
    • 5 Jeoung, J.W., Kim, T.W., Weinreb, R.N., et al. Diagnostic ability of spectral-domain versus time-domain optical coherence tomography in preperimetric glaucoma. J Glaucoma 23 (2014), 299–306.
    • (2014) J Glaucoma , vol.23 , pp. 299-306
    • Jeoung, J.W.1    Kim, T.W.2    Weinreb, R.N.3
  • 6
    • 84916597662 scopus 로고    scopus 로고
    • Diagnostic validity of macular ganglion cell-inner plexiform layer thickness deviation map algorithm using Cirrus HD-OCT in preperimetric and early glaucoma
    • 6 Sung, M.S., Yoon, J.H., Park, S.W., Diagnostic validity of macular ganglion cell-inner plexiform layer thickness deviation map algorithm using Cirrus HD-OCT in preperimetric and early glaucoma. J Glaucoma 23 (2014), e144–e151.
    • (2014) J Glaucoma , vol.23 , pp. e144-e151
    • Sung, M.S.1    Yoon, J.H.2    Park, S.W.3
  • 7
    • 34247376284 scopus 로고    scopus 로고
    • Frequency doubling perimetry and short-wavelength automated perimetry to detect early glaucoma
    • 7 Leeprechanon, N., Giaconi, J.A., Manassakorn, A., et al. Frequency doubling perimetry and short-wavelength automated perimetry to detect early glaucoma. Ophthalmology 114 (2007), 931–937.
    • (2007) Ophthalmology , vol.114 , pp. 931-937
    • Leeprechanon, N.1    Giaconi, J.A.2    Manassakorn, A.3
  • 8
    • 78651506015 scopus 로고    scopus 로고
    • Comparison of scanning laser polarimetry and optical coherence tomography in preperimetric glaucoma
    • 8 Kim, H.G., Heo, H., Park, S.W., Comparison of scanning laser polarimetry and optical coherence tomography in preperimetric glaucoma. Optom Vis Sci 88 (2011), 124–129.
    • (2011) Optom Vis Sci , vol.88 , pp. 124-129
    • Kim, H.G.1    Heo, H.2    Park, S.W.3
  • 9
    • 37349056008 scopus 로고    scopus 로고
    • Preperimetric glaucoma assessment with scanning laser polarimetry (GDx VCC): analysis of retinal nerve fiber layer by sectors
    • 9 Baraibar, B., Sanchez-Cano, A., Pablo, L.E., et al. Preperimetric glaucoma assessment with scanning laser polarimetry (GDx VCC): analysis of retinal nerve fiber layer by sectors. J Glaucoma 16 (2007), 659–664.
    • (2007) J Glaucoma , vol.16 , pp. 659-664
    • Baraibar, B.1    Sanchez-Cano, A.2    Pablo, L.E.3
  • 10
    • 84878136777 scopus 로고    scopus 로고
    • Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma
    • 10 Lisboa, R., Paranhos, A. Jr., Weinreb, R.N., et al. Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma. Invest Ophthalmol Vis Sci 54 (2013), 3417–3425.
    • (2013) Invest Ophthalmol Vis Sci , vol.54 , pp. 3417-3425
    • Lisboa, R.1    Paranhos, A.2    Weinreb, R.N.3
  • 11
    • 84868202351 scopus 로고    scopus 로고
    • Diagnosing preperimetric glaucoma with spectral domain optical coherence tomography
    • 11 Lisboa, R., Leite, M.T., Zangwill, L.M., et al. Diagnosing preperimetric glaucoma with spectral domain optical coherence tomography. Ophthalmology 119 (2012), 2261–2269.
    • (2012) Ophthalmology , vol.119 , pp. 2261-2269
    • Lisboa, R.1    Leite, M.T.2    Zangwill, L.M.3
  • 12
    • 0010447334 scopus 로고    scopus 로고
    • Textbook of Glaucoma
    • William & Wilkins Baltimore
    • 12 Shields, M.B., Textbook of Glaucoma. 1997, William & Wilkins, Baltimore.
    • (1997)
    • Shields, M.B.1
  • 13
    • 0014466928 scopus 로고
    • The early field defects in glaucoma
    • 13 Drance, S.M., The early field defects in glaucoma. Invest Ophthalmol 8 (1969), 84–91.
    • (1969) Invest Ophthalmol , vol.8 , pp. 84-91
    • Drance, S.M.1
  • 14
    • 20144384821 scopus 로고    scopus 로고
    • Clinical Pathways in Glaucoma
    • Thieme New York
    • 14 Zimmerman, T.J., Karanzit, K.S., Clinical Pathways in Glaucoma. 2001, Thieme, New York.
    • (2001)
    • Zimmerman, T.J.1    Karanzit, K.S.2
  • 15
    • 84922482121 scopus 로고    scopus 로고
    • Identifying “preperimetric” glaucoma in standard automated perimetry visual fields
    • 15 Asaoka, R., Iwase, A., Hirasawa, K., et al. Identifying “preperimetric” glaucoma in standard automated perimetry visual fields. Invest Ophthalmol Vis Sci 55 (2014), 7814–7820.
    • (2014) Invest Ophthalmol Vis Sci , vol.55 , pp. 7814-7820
    • Asaoka, R.1    Iwase, A.2    Hirasawa, K.3
  • 16
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • 16 Breiman, L., Random Forests. Machine Learning 45 (2001), 5–32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 17
    • 84982241641 scopus 로고    scopus 로고
    • Accessed June 21, 2016
    • 17 Breiman L, Cutler A. Random Forests, 2004. https://www.stat.berkeley.edu/∼breiman/RandomForests; Accessed June 21, 2016.
    • (2004) Om Forests
    • Breiman, L.1    Cutler, A.R.2
  • 18
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • 18 Hinton, G.E., Osindero, S., Teh, Y.W., A fast learning algorithm for deep belief nets. Neural Comput 18 (2006), 1527–1554.
    • (2006) Neural Comput , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 22
    • 84982300413 scopus 로고    scopus 로고
    • Computationally efficient confidence intervals for cross-validated area under the ROC curve estimates
    • Division of Biostatistics, University of California at Berkeley, Working Paper Series. Working Paper 304
    • 22 Erin, L.D., Maya, L.P., Mark, V.D.R.J., Computationally efficient confidence intervals for cross-validated area under the ROC curve estimates. Division of Biostatistics, University of California at Berkeley, Working Paper Series. Working Paper 304, 2012.
    • (2012)
    • Erin, L.D.1    Maya, L.P.2    Mark, V.D.R.J.3
  • 23
    • 0346586663 scopus 로고    scopus 로고
    • Smote: synthetic minority over-sampling technique
    • 23 Chawla, N.V., Bowyer, K.W., Hall, L.O., et al. Smote: synthetic minority over-sampling technique. J Artif Intell Res 16 (2000), 321–357.
    • (2000) J Artif Intell Res , vol.16 , pp. 321-357
    • Chawla, N.V.1    Bowyer, K.W.2    Hall, L.O.3
  • 29
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • 29 Hinton, G.E., Salakhutdinov, R.R., Reducing the dimensionality of data with neural networks. Science 313 (2006), 504–507.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 30
    • 84874545393 scopus 로고    scopus 로고
    • DNdisorder: predicting protein disorder using boosting and deep networks
    • 3066–72
    • 30 Eickholt, J., Cheng, J., DNdisorder: predicting protein disorder using boosting and deep networks. BMC Bioinform, 14, 2013, 88 3066–72.
    • (2013) BMC Bioinform , vol.14 , pp. 88
    • Eickholt, J.1    Cheng, J.2
  • 31
    • 0030060735 scopus 로고    scopus 로고
    • The effect of perimetric experience in patients with glaucoma
    • 31 Heijl, A., Bengtsson, B., The effect of perimetric experience in patients with glaucoma. Arch Ophthalmol 114 (1996), 19–22.
    • (1996) Arch Ophthalmol , vol.114 , pp. 19-22
    • Heijl, A.1    Bengtsson, B.2
  • 32
    • 0024451703 scopus 로고
    • The influence of the learning effect on automated perimetry in patients with suspected glaucoma
    • 32 Wild, J.M., Dengler-Harles, M., Searle, A.E., et al. The influence of the learning effect on automated perimetry in patients with suspected glaucoma. Acta Ophthalmol (Copenh) 67 (1989), 537–545.
    • (1989) Acta Ophthalmol (Copenh) , vol.67 , pp. 537-545
    • Wild, J.M.1    Dengler-Harles, M.2    Searle, A.E.3
  • 33
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • 33 Rumelhart, D.E., Hinton, G.E., Williams, R.J., Learning representations by back-propagating errors. Nature 323 (1986), 533–536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 34
    • 0003529238 scopus 로고
    • Beyond Regression: New Tools for Prediction and Analysis in the Behavioral. Sciences
    • PhD dissertation Harvard University Cambridge, MA
    • 34 Werbos, P.J., Beyond Regression: New Tools for Prediction and Analysis in the Behavioral. Sciences. PhD dissertation, 1974, Harvard University, Cambridge, MA.
    • (1974)
    • Werbos, P.J.1
  • 35
    • 84924514239 scopus 로고    scopus 로고
    • Evaluating Learning Algorithms: A Classification Perspective
    • Cambridge University Press Cambridge, UK
    • 35 Japkowicz, N., Evaluating Learning Algorithms: A Classification Perspective. 2011, Cambridge University Press, Cambridge, UK.
    • (2011)
    • Japkowicz, N.1
  • 36
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: a new explanation for the effectiveness of voting methods
    • 36 Schapire, R.E., Freund, Y., Bartlett, P., et al. Boosting the margin: a new explanation for the effectiveness of voting methods. Ann Stat 26 (1998), 1651–1686.
    • (1998) Ann Stat , vol.26 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3
  • 37
    • 84979036908 scopus 로고    scopus 로고
    • An introduction to support vector machines and other kernel-based learning methods
    • Cambridge University Press Cambridge, UK
    • 37 Cristianini, N., Shawe-Taylor, J., An introduction to support vector machines and other kernel-based learning methods. 2000, Cambridge University Press, Cambridge, UK.
    • (2000)
    • Cristianini, N.1    Shawe-Taylor, J.2
  • 38
    • 16244366026 scopus 로고
    • Index for rating diagnostic tests
    • 38 Youden, W.J., Index for rating diagnostic tests. Cancer 3 (1950), 32–35.
    • (1950) Cancer , vol.3 , pp. 32-35
    • Youden, W.J.1
  • 39
    • 0344329377 scopus 로고    scopus 로고
    • Ganglion cell losses underlying visual field defects from experimental glaucoma
    • 39 Harwerth, R.S., Carter-Dawson, L., Shen, F., et al. Ganglion cell losses underlying visual field defects from experimental glaucoma. Invest Ophthalmol Vis Sci 40 (1999), 2242–2250.
    • (1999) Invest Ophthalmol Vis Sci , vol.40 , pp. 2242-2250
    • Harwerth, R.S.1    Carter-Dawson, L.2    Shen, F.3
  • 40
    • 84899652509 scopus 로고    scopus 로고
    • A method to measure visual field sensitivity at the edges of glaucomatous scotomata
    • 40 Aoyama, Y., Murata, H., Tahara, M., et al. A method to measure visual field sensitivity at the edges of glaucomatous scotomata. Invest Ophthalmol Vis Sci 55 (2014), 2584–2591.
    • (2014) Invest Ophthalmol Vis Sci , vol.55 , pp. 2584-2591
    • Aoyama, Y.1    Murata, H.2    Tahara, M.3
  • 41
    • 84896285980 scopus 로고    scopus 로고
    • Prevalence and nature of early glaucomatous defects in the central 10 degrees of the visual field
    • 41 Traynis, I., De Moraes, C.G., Raza, A.S., et al. Prevalence and nature of early glaucomatous defects in the central 10 degrees of the visual field. JAMA Ophthalmol 132 (2014), 291–297.
    • (2014) JAMA Ophthalmol , vol.132 , pp. 291-297
    • Traynis, I.1    De Moraes, C.G.2    Raza, A.S.3
  • 42
    • 71449083243 scopus 로고    scopus 로고
    • Specification of progression in glaucomatous visual field loss, applying locally condensed stimulus arrangements
    • 42 Nevalainen, J., Paetzold, J., Papageorgiou, E., et al. Specification of progression in glaucomatous visual field loss, applying locally condensed stimulus arrangements. Graefes Arch Clin Exp Ophthalmol 247 (2009), 1659–1669.
    • (2009) Graefes Arch Clin Exp Ophthalmol , vol.247 , pp. 1659-1669
    • Nevalainen, J.1    Paetzold, J.2    Papageorgiou, E.3
  • 43
    • 79953281246 scopus 로고    scopus 로고
    • The influence of sampling errors on test-retest variability in perimetry
    • 43 Maddess, T., The influence of sampling errors on test-retest variability in perimetry. Invest Ophthalmol Vis Sci 52 (2011), 1014–1022.
    • (2011) Invest Ophthalmol Vis Sci , vol.52 , pp. 1014-1022
    • Maddess, T.1
  • 44
    • 0022617946 scopus 로고
    • What is the most suitable grid for computer perimetry in glaucoma patients?
    • 44 Weber, J., Dobek, K., What is the most suitable grid for computer perimetry in glaucoma patients?. Ophthalmologica 192 (1986), 88–96.
    • (1986) Ophthalmologica , vol.192 , pp. 88-96
    • Weber, J.1    Dobek, K.2
  • 45
    • 84912524595 scopus 로고    scopus 로고
    • Asymmetry analysis of macular inner retinal layers for glaucoma diagnosis
    • 45 Yamada, H., Hangai, M., Nakano, N., et al. Asymmetry analysis of macular inner retinal layers for glaucoma diagnosis. Am J Ophthalmol 158 (2014), 1318–1329.e1313.
    • (2014) Am J Ophthalmol , vol.158 , pp. 1318-1329.e1313
    • Yamada, H.1    Hangai, M.2    Nakano, N.3
  • 46
    • 84874125782 scopus 로고    scopus 로고
    • An efficient learning procedure for deep Boltzmann machines
    • 46 Salakhutdinov, R., Hinton, G., An efficient learning procedure for deep Boltzmann machines. Neural Comput 24 (2012), 1967–2006.
    • (2012) Neural Comput , vol.24 , pp. 1967-2006
    • Salakhutdinov, R.1    Hinton, G.2
  • 47
    • 78149327741 scopus 로고    scopus 로고
    • Kernel methods for deep learning
    • 47 Cho, Y., Saul, S.K., Kernel methods for deep learning. Neur Inform Process Syst 22 (2009), 342–350.
    • (2009) Neur Inform Process Syst , vol.22 , pp. 342-350
    • Cho, Y.1    Saul, S.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.