-
1
-
-
0004151004
-
Automated Static Perimetry
-
2nd ed Mosby St. Louis
-
1 Anderson, D.R., Patella, V.M., Automated Static Perimetry. 2nd ed, 1999, Mosby, St. Louis.
-
(1999)
-
-
Anderson, D.R.1
Patella, V.M.2
-
2
-
-
34250624878
-
Can frequency-doubling technology and short-wavelength automated perimetries detect visual field defects before standard automated perimetry in patients with preperimetric glaucoma?
-
2 Ferreras, A., Polo, V., Larrosa, J.M., et al. Can frequency-doubling technology and short-wavelength automated perimetries detect visual field defects before standard automated perimetry in patients with preperimetric glaucoma?. J Glaucoma 16 (2007), 372–383.
-
(2007)
J Glaucoma
, vol.16
, pp. 372-383
-
-
Ferreras, A.1
Polo, V.2
Larrosa, J.M.3
-
3
-
-
59449090562
-
Interpretation of the Humphrey Matrix 24-2 test in the diagnosis of preperimetric glaucoma
-
3 Choi, J.A., Lee, N.Y., Park, C.K., Interpretation of the Humphrey Matrix 24-2 test in the diagnosis of preperimetric glaucoma. Jpn J Ophthalmol 53 (2009), 24–30.
-
(2009)
Jpn J Ophthalmol
, vol.53
, pp. 24-30
-
-
Choi, J.A.1
Lee, N.Y.2
Park, C.K.3
-
4
-
-
84872335566
-
Frequency-doubling technology and retinal measurements with spectral-domain optical coherence tomography in preperimetric glaucoma
-
4 Hirashima, T., Hangai, M., Nukada, M., et al. Frequency-doubling technology and retinal measurements with spectral-domain optical coherence tomography in preperimetric glaucoma. Graefes Arch Clin Exp Ophthalmol 251 (2013), 129–137.
-
(2013)
Graefes Arch Clin Exp Ophthalmol
, vol.251
, pp. 129-137
-
-
Hirashima, T.1
Hangai, M.2
Nukada, M.3
-
5
-
-
84902260658
-
Diagnostic ability of spectral-domain versus time-domain optical coherence tomography in preperimetric glaucoma
-
5 Jeoung, J.W., Kim, T.W., Weinreb, R.N., et al. Diagnostic ability of spectral-domain versus time-domain optical coherence tomography in preperimetric glaucoma. J Glaucoma 23 (2014), 299–306.
-
(2014)
J Glaucoma
, vol.23
, pp. 299-306
-
-
Jeoung, J.W.1
Kim, T.W.2
Weinreb, R.N.3
-
6
-
-
84916597662
-
Diagnostic validity of macular ganglion cell-inner plexiform layer thickness deviation map algorithm using Cirrus HD-OCT in preperimetric and early glaucoma
-
6 Sung, M.S., Yoon, J.H., Park, S.W., Diagnostic validity of macular ganglion cell-inner plexiform layer thickness deviation map algorithm using Cirrus HD-OCT in preperimetric and early glaucoma. J Glaucoma 23 (2014), e144–e151.
-
(2014)
J Glaucoma
, vol.23
, pp. e144-e151
-
-
Sung, M.S.1
Yoon, J.H.2
Park, S.W.3
-
7
-
-
34247376284
-
Frequency doubling perimetry and short-wavelength automated perimetry to detect early glaucoma
-
7 Leeprechanon, N., Giaconi, J.A., Manassakorn, A., et al. Frequency doubling perimetry and short-wavelength automated perimetry to detect early glaucoma. Ophthalmology 114 (2007), 931–937.
-
(2007)
Ophthalmology
, vol.114
, pp. 931-937
-
-
Leeprechanon, N.1
Giaconi, J.A.2
Manassakorn, A.3
-
8
-
-
78651506015
-
Comparison of scanning laser polarimetry and optical coherence tomography in preperimetric glaucoma
-
8 Kim, H.G., Heo, H., Park, S.W., Comparison of scanning laser polarimetry and optical coherence tomography in preperimetric glaucoma. Optom Vis Sci 88 (2011), 124–129.
-
(2011)
Optom Vis Sci
, vol.88
, pp. 124-129
-
-
Kim, H.G.1
Heo, H.2
Park, S.W.3
-
9
-
-
37349056008
-
Preperimetric glaucoma assessment with scanning laser polarimetry (GDx VCC): analysis of retinal nerve fiber layer by sectors
-
9 Baraibar, B., Sanchez-Cano, A., Pablo, L.E., et al. Preperimetric glaucoma assessment with scanning laser polarimetry (GDx VCC): analysis of retinal nerve fiber layer by sectors. J Glaucoma 16 (2007), 659–664.
-
(2007)
J Glaucoma
, vol.16
, pp. 659-664
-
-
Baraibar, B.1
Sanchez-Cano, A.2
Pablo, L.E.3
-
10
-
-
84878136777
-
Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma
-
10 Lisboa, R., Paranhos, A. Jr., Weinreb, R.N., et al. Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma. Invest Ophthalmol Vis Sci 54 (2013), 3417–3425.
-
(2013)
Invest Ophthalmol Vis Sci
, vol.54
, pp. 3417-3425
-
-
Lisboa, R.1
Paranhos, A.2
Weinreb, R.N.3
-
11
-
-
84868202351
-
Diagnosing preperimetric glaucoma with spectral domain optical coherence tomography
-
11 Lisboa, R., Leite, M.T., Zangwill, L.M., et al. Diagnosing preperimetric glaucoma with spectral domain optical coherence tomography. Ophthalmology 119 (2012), 2261–2269.
-
(2012)
Ophthalmology
, vol.119
, pp. 2261-2269
-
-
Lisboa, R.1
Leite, M.T.2
Zangwill, L.M.3
-
12
-
-
0010447334
-
Textbook of Glaucoma
-
William & Wilkins Baltimore
-
12 Shields, M.B., Textbook of Glaucoma. 1997, William & Wilkins, Baltimore.
-
(1997)
-
-
Shields, M.B.1
-
13
-
-
0014466928
-
The early field defects in glaucoma
-
13 Drance, S.M., The early field defects in glaucoma. Invest Ophthalmol 8 (1969), 84–91.
-
(1969)
Invest Ophthalmol
, vol.8
, pp. 84-91
-
-
Drance, S.M.1
-
14
-
-
20144384821
-
Clinical Pathways in Glaucoma
-
Thieme New York
-
14 Zimmerman, T.J., Karanzit, K.S., Clinical Pathways in Glaucoma. 2001, Thieme, New York.
-
(2001)
-
-
Zimmerman, T.J.1
Karanzit, K.S.2
-
15
-
-
84922482121
-
Identifying “preperimetric” glaucoma in standard automated perimetry visual fields
-
15 Asaoka, R., Iwase, A., Hirasawa, K., et al. Identifying “preperimetric” glaucoma in standard automated perimetry visual fields. Invest Ophthalmol Vis Sci 55 (2014), 7814–7820.
-
(2014)
Invest Ophthalmol Vis Sci
, vol.55
, pp. 7814-7820
-
-
Asaoka, R.1
Iwase, A.2
Hirasawa, K.3
-
16
-
-
0035478854
-
Random Forests
-
16 Breiman, L., Random Forests. Machine Learning 45 (2001), 5–32.
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
17
-
-
84982241641
-
-
Accessed June 21, 2016
-
17 Breiman L, Cutler A. Random Forests, 2004. https://www.stat.berkeley.edu/∼breiman/RandomForests; Accessed June 21, 2016.
-
(2004)
Om Forests
-
-
Breiman, L.1
Cutler, A.R.2
-
18
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
18 Hinton, G.E., Osindero, S., Teh, Y.W., A fast learning algorithm for deep belief nets. Neural Comput 18 (2006), 1527–1554.
-
(2006)
Neural Comput
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.W.3
-
19
-
-
70049094447
-
Sparse feature learning for deep belief networks
-
19 Ranzato, M.A., Boureau, Y.I., Cun, Y.L., Sparse feature learning for deep belief networks. Advances Neural Information Processing Systems (NIPS 2007), 2007, 1185–1192.
-
(2007)
Advances Neural Information Processing Systems (NIPS 2007)
, pp. 1185-1192
-
-
Ranzato, M.A.1
Boureau, Y.I.2
Cun, Y.L.3
-
20
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
20 Vincent, P., Larochelle, H., Bengio, Y., et al. Extracting and composing robust features with denoising autoencoders. International Conference on Machine Learning (ICML-08), 2008, 1096–1103.
-
(2008)
International Conference on Machine Learning (ICML-08)
, pp. 1096-1103
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
-
22
-
-
84982300413
-
Computationally efficient confidence intervals for cross-validated area under the ROC curve estimates
-
Division of Biostatistics, University of California at Berkeley, Working Paper Series. Working Paper 304
-
22 Erin, L.D., Maya, L.P., Mark, V.D.R.J., Computationally efficient confidence intervals for cross-validated area under the ROC curve estimates. Division of Biostatistics, University of California at Berkeley, Working Paper Series. Working Paper 304, 2012.
-
(2012)
-
-
Erin, L.D.1
Maya, L.P.2
Mark, V.D.R.J.3
-
23
-
-
0346586663
-
Smote: synthetic minority over-sampling technique
-
23 Chawla, N.V., Bowyer, K.W., Hall, L.O., et al. Smote: synthetic minority over-sampling technique. J Artif Intell Res 16 (2000), 321–357.
-
(2000)
J Artif Intell Res
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
-
25
-
-
78149336740
-
Convolutional learning of spatio-temporal features
-
25 Taylor, G.W., Fergus, R., LeCun, Y., et al. Convolutional learning of spatio-temporal features. Proceedings of the 11th European conference on Computer vision (ECCV-10): Part VI, 2010, 140–153.
-
(2010)
Proceedings of the 11th European conference on Computer vision (ECCV-10): Part VI
, pp. 140-153
-
-
Taylor, G.W.1
Fergus, R.2
LeCun, Y.3
-
26
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
26 Lee, H., Grosse, R., Ranganath, R., et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. Proceedings of the 26th International Conference on Machine Learning (ICML-09), 2009, 1–8.
-
(2009)
Proceedings of the 26th International Conference on Machine Learning (ICML-09)
, pp. 1-8
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
-
27
-
-
80053438267
-
Parsing natural scenes and natural language
-
27 Sochard, R., Lin, C., Ng, A.Y., et al. Parsing natural scenes and natural language. Proceedings of the 28th International Conference on Machine Learning (ICML-11), 2011, 129–136.
-
(2011)
Proceedings of the 28th International Conference on Machine Learning (ICML-11)
, pp. 129-136
-
-
Sochard, R.1
Lin, C.2
Ng, A.Y.3
-
29
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
29 Hinton, G.E., Salakhutdinov, R.R., Reducing the dimensionality of data with neural networks. Science 313 (2006), 504–507.
-
(2006)
Science
, vol.313
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
30
-
-
84874545393
-
DNdisorder: predicting protein disorder using boosting and deep networks
-
3066–72
-
30 Eickholt, J., Cheng, J., DNdisorder: predicting protein disorder using boosting and deep networks. BMC Bioinform, 14, 2013, 88 3066–72.
-
(2013)
BMC Bioinform
, vol.14
, pp. 88
-
-
Eickholt, J.1
Cheng, J.2
-
31
-
-
0030060735
-
The effect of perimetric experience in patients with glaucoma
-
31 Heijl, A., Bengtsson, B., The effect of perimetric experience in patients with glaucoma. Arch Ophthalmol 114 (1996), 19–22.
-
(1996)
Arch Ophthalmol
, vol.114
, pp. 19-22
-
-
Heijl, A.1
Bengtsson, B.2
-
32
-
-
0024451703
-
The influence of the learning effect on automated perimetry in patients with suspected glaucoma
-
32 Wild, J.M., Dengler-Harles, M., Searle, A.E., et al. The influence of the learning effect on automated perimetry in patients with suspected glaucoma. Acta Ophthalmol (Copenh) 67 (1989), 537–545.
-
(1989)
Acta Ophthalmol (Copenh)
, vol.67
, pp. 537-545
-
-
Wild, J.M.1
Dengler-Harles, M.2
Searle, A.E.3
-
33
-
-
0022471098
-
Learning representations by back-propagating errors
-
33 Rumelhart, D.E., Hinton, G.E., Williams, R.J., Learning representations by back-propagating errors. Nature 323 (1986), 533–536.
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
34
-
-
0003529238
-
Beyond Regression: New Tools for Prediction and Analysis in the Behavioral. Sciences
-
PhD dissertation Harvard University Cambridge, MA
-
34 Werbos, P.J., Beyond Regression: New Tools for Prediction and Analysis in the Behavioral. Sciences. PhD dissertation, 1974, Harvard University, Cambridge, MA.
-
(1974)
-
-
Werbos, P.J.1
-
35
-
-
84924514239
-
Evaluating Learning Algorithms: A Classification Perspective
-
Cambridge University Press Cambridge, UK
-
35 Japkowicz, N., Evaluating Learning Algorithms: A Classification Perspective. 2011, Cambridge University Press, Cambridge, UK.
-
(2011)
-
-
Japkowicz, N.1
-
36
-
-
0032280519
-
Boosting the margin: a new explanation for the effectiveness of voting methods
-
36 Schapire, R.E., Freund, Y., Bartlett, P., et al. Boosting the margin: a new explanation for the effectiveness of voting methods. Ann Stat 26 (1998), 1651–1686.
-
(1998)
Ann Stat
, vol.26
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
-
37
-
-
84979036908
-
An introduction to support vector machines and other kernel-based learning methods
-
Cambridge University Press Cambridge, UK
-
37 Cristianini, N., Shawe-Taylor, J., An introduction to support vector machines and other kernel-based learning methods. 2000, Cambridge University Press, Cambridge, UK.
-
(2000)
-
-
Cristianini, N.1
Shawe-Taylor, J.2
-
38
-
-
16244366026
-
Index for rating diagnostic tests
-
38 Youden, W.J., Index for rating diagnostic tests. Cancer 3 (1950), 32–35.
-
(1950)
Cancer
, vol.3
, pp. 32-35
-
-
Youden, W.J.1
-
39
-
-
0344329377
-
Ganglion cell losses underlying visual field defects from experimental glaucoma
-
39 Harwerth, R.S., Carter-Dawson, L., Shen, F., et al. Ganglion cell losses underlying visual field defects from experimental glaucoma. Invest Ophthalmol Vis Sci 40 (1999), 2242–2250.
-
(1999)
Invest Ophthalmol Vis Sci
, vol.40
, pp. 2242-2250
-
-
Harwerth, R.S.1
Carter-Dawson, L.2
Shen, F.3
-
40
-
-
84899652509
-
A method to measure visual field sensitivity at the edges of glaucomatous scotomata
-
40 Aoyama, Y., Murata, H., Tahara, M., et al. A method to measure visual field sensitivity at the edges of glaucomatous scotomata. Invest Ophthalmol Vis Sci 55 (2014), 2584–2591.
-
(2014)
Invest Ophthalmol Vis Sci
, vol.55
, pp. 2584-2591
-
-
Aoyama, Y.1
Murata, H.2
Tahara, M.3
-
41
-
-
84896285980
-
Prevalence and nature of early glaucomatous defects in the central 10 degrees of the visual field
-
41 Traynis, I., De Moraes, C.G., Raza, A.S., et al. Prevalence and nature of early glaucomatous defects in the central 10 degrees of the visual field. JAMA Ophthalmol 132 (2014), 291–297.
-
(2014)
JAMA Ophthalmol
, vol.132
, pp. 291-297
-
-
Traynis, I.1
De Moraes, C.G.2
Raza, A.S.3
-
42
-
-
71449083243
-
Specification of progression in glaucomatous visual field loss, applying locally condensed stimulus arrangements
-
42 Nevalainen, J., Paetzold, J., Papageorgiou, E., et al. Specification of progression in glaucomatous visual field loss, applying locally condensed stimulus arrangements. Graefes Arch Clin Exp Ophthalmol 247 (2009), 1659–1669.
-
(2009)
Graefes Arch Clin Exp Ophthalmol
, vol.247
, pp. 1659-1669
-
-
Nevalainen, J.1
Paetzold, J.2
Papageorgiou, E.3
-
43
-
-
79953281246
-
The influence of sampling errors on test-retest variability in perimetry
-
43 Maddess, T., The influence of sampling errors on test-retest variability in perimetry. Invest Ophthalmol Vis Sci 52 (2011), 1014–1022.
-
(2011)
Invest Ophthalmol Vis Sci
, vol.52
, pp. 1014-1022
-
-
Maddess, T.1
-
44
-
-
0022617946
-
What is the most suitable grid for computer perimetry in glaucoma patients?
-
44 Weber, J., Dobek, K., What is the most suitable grid for computer perimetry in glaucoma patients?. Ophthalmologica 192 (1986), 88–96.
-
(1986)
Ophthalmologica
, vol.192
, pp. 88-96
-
-
Weber, J.1
Dobek, K.2
-
45
-
-
84912524595
-
Asymmetry analysis of macular inner retinal layers for glaucoma diagnosis
-
45 Yamada, H., Hangai, M., Nakano, N., et al. Asymmetry analysis of macular inner retinal layers for glaucoma diagnosis. Am J Ophthalmol 158 (2014), 1318–1329.e1313.
-
(2014)
Am J Ophthalmol
, vol.158
, pp. 1318-1329.e1313
-
-
Yamada, H.1
Hangai, M.2
Nakano, N.3
-
46
-
-
84874125782
-
An efficient learning procedure for deep Boltzmann machines
-
46 Salakhutdinov, R., Hinton, G., An efficient learning procedure for deep Boltzmann machines. Neural Comput 24 (2012), 1967–2006.
-
(2012)
Neural Comput
, vol.24
, pp. 1967-2006
-
-
Salakhutdinov, R.1
Hinton, G.2
-
47
-
-
78149327741
-
Kernel methods for deep learning
-
47 Cho, Y., Saul, S.K., Kernel methods for deep learning. Neur Inform Process Syst 22 (2009), 342–350.
-
(2009)
Neur Inform Process Syst
, vol.22
, pp. 342-350
-
-
Cho, Y.1
Saul, S.K.2
|