메뉴 건너뛰기




Volumn 55, Issue 12, 2014, Pages 7814-7820

Identifying ‘‘preperimetric’’ glaucoma in standard automated perimetry visual fields

Author keywords

Glaucoma; Preperimetric stage; Random Forests method; Visual field

Indexed keywords

ADULT; ARTICLE; CONTROLLED STUDY; DIAGNOSTIC TEST ACCURACY STUDY; FEMALE; GLAUCOMA; HUMAN; MALE; OPEN ANGLE GLAUCOMA; OPHTHALMOSCOPY; PERIMETRY; PREPERIMETRIC GLAUCOMA VISUAL FIELD; PRIORITY JOURNAL; RANDOM FOREST; RETROSPECTIVE STUDY; SCORING SYSTEM; SENSITIVITY AND SPECIFICITY; VISUAL FIELD; AGED; CASE CONTROL STUDY; MIDDLE AGED; PROCEDURES; RECEIVER OPERATING CHARACTERISTIC;

EID: 84922482121     PISSN: 01460404     EISSN: 15525783     Source Type: Journal    
DOI: 10.1167/iovs.14-15120     Document Type: Article
Times cited : (22)

References (50)
  • 1
    • 0024402107 scopus 로고
    • Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma
    • Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989;107:453–464
    • (1989) Am J Ophthalmol , vol.107 , pp. 453-464
    • Quigley, H.A.1    Dunkelberger, G.R.2    Green, W.R.3
  • 2
    • 84887944332 scopus 로고    scopus 로고
    • Cross-sectional study: Does combining optical coherence tomography measurements using the ‘Random Forest’ decision tree classifier improve the prediction of the presence of perimetric deterioration in glaucoma suspects?
    • Sugimoto K, Murata H, Hirasawa H, et al. Cross-sectional study: does combining optical coherence tomography measurements using the ‘Random Forest’ decision tree classifier improve the prediction of the presence of perimetric deterioration in glaucoma suspects? BMJ Open. 2013;3:e003114
    • (2013) BMJ Open , vol.3
    • Sugimoto, K.1    Murata, H.2    Hirasawa, H.3
  • 3
    • 29144533913 scopus 로고    scopus 로고
    • Early detection of thinning of retinal nerve fiber layer in glaucomatous eyes by optical coherence tomography 3000: Analysis of retinal nerve fiber layer corresponding to the preserved hemivisual field
    • Asaoka R, Ishii R, Kyu N, et al. Early detection of thinning of retinal nerve fiber layer in glaucomatous eyes by optical coherence tomography 3000: analysis of retinal nerve fiber layer corresponding to the preserved hemivisual field. Ophthalmic Res. 2006;38:29–35
    • (2006) Ophthalmic Res , vol.38 , pp. 29-35
    • Asaoka, R.1    Ishii, R.2    Kyu, N.3
  • 4
    • 84916597662 scopus 로고    scopus 로고
    • Diagnostic validity of macular ganglion cell-inner plexiform layer thickness deviation map algorithm using Cirrus HD-OCT in preperimetric and early glaucoma
    • Sung MS, Yoon JH, Park SW. Diagnostic validity of macular ganglion cell-inner plexiform layer thickness deviation map algorithm using Cirrus HD-OCT in preperimetric and early glaucoma. J Glaucoma. 2013;23:e144–151
    • (2013) J Glaucoma , vol.23
    • Sung, M.S.1    Yoon, J.H.2    Park, S.W.3
  • 5
    • 84878136777 scopus 로고    scopus 로고
    • Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma
    • Lisboa R, Paranhos A Jr, Weinreb RN, et al. Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma. Invest Ophthalmol Vis Sci. 2013;54:3417–3425
    • (2013) Invest Ophthalmol Vis Sci , vol.54 , pp. 3417-3425
    • Lisboa, R.1    Paranhos, A.2    Weinreb, R.N.3
  • 6
    • 84902260658 scopus 로고    scopus 로고
    • Diagnostic ability of spectral-domain versus time-domain optical coherence tomography in preperimetric glaucoma
    • Jeoung JW, Kim TW, Weinreb RN, et al. Diagnostic ability of spectral-domain versus time-domain optical coherence tomography in preperimetric glaucoma. J Glaucoma. 2013;23:299–306
    • (2013) J Glaucoma , vol.23 , pp. 299-306
    • Jeoung, J.W.1    Kim, T.W.2    Weinreb, R.N.3
  • 7
    • 84868202351 scopus 로고    scopus 로고
    • Diagnosing preperimetric glaucoma with spectral domain optical coherence tomography
    • Lisboa R, Leite MT, Zangwill LM, et al. Diagnosing preperimetric glaucoma with spectral domain optical coherence tomography. Ophthalmology. 2012;119:2261–2269
    • (2012) Ophthalmology , vol.119 , pp. 2261-2269
    • Lisboa, R.1    Leite, M.T.2    Zangwill, L.M.3
  • 8
    • 78651506015 scopus 로고    scopus 로고
    • Comparison of scanning laser polarimetry and optical coherence tomography in preperimetric glaucoma
    • Kim HG, Heo H, Park SW. Comparison of scanning laser polarimetry and optical coherence tomography in preperimetric glaucoma. Optom Vis Sci. 2011;88:124–129
    • (2011) Optom Vis Sci , vol.88 , pp. 124-129
    • Kim, H.G.1    Heo, H.2    Park, S.W.3
  • 9
    • 37349056008 scopus 로고    scopus 로고
    • Preperimetric glaucoma assessment with scanning laser polarimetry (GDx VCC): Analysis of retinal nerve fiber layer by sectors
    • Baraibar B, Sanchez-Cano A, Pablo LE, et al. Preperimetric glaucoma assessment with scanning laser polarimetry (GDx VCC): analysis of retinal nerve fiber layer by sectors. J Glaucoma. 2007;16:659–664
    • (2007) J Glaucoma , vol.16 , pp. 659-664
    • Baraibar, B.1    Sanchez-Cano, A.2    Pablo, L.E.3
  • 10
    • 34250624878 scopus 로고    scopus 로고
    • Can frequency-doubling technology and short-wavelength automated perimetries detect visual field defects before standard automated perimetry in patients with preperimetric glaucoma?
    • Ferreras A, Polo V, Larrosa JM, et al. Can frequency-doubling technology and short-wavelength automated perimetries detect visual field defects before standard automated perimetry in patients with preperimetric glaucoma? J Glaucoma. 2007;16:372–383
    • (2007) J Glaucoma , vol.16 , pp. 372-383
    • Ferreras, A.1    Polo, V.2    Larrosa, J.M.3
  • 11
    • 84872335566 scopus 로고    scopus 로고
    • Frequency-doubling technology and retinal measurements with spectral-domain optical coherence tomography in preperimetric glaucoma
    • Hirashima T, Hangai M, Nukada M, et al. Frequency-doubling technology and retinal measurements with spectral-domain optical coherence tomography in preperimetric glaucoma. Graefes Arch Clin Exp Ophthalmol. 2013;251:129–137
    • (2013) Graefes Arch Clin Exp Ophthalmol , vol.251 , pp. 129-137
    • Hirashima, T.1    Hangai, M.2    Nukada, M.3
  • 12
    • 30344441495 scopus 로고    scopus 로고
    • Prediction of visual field defects on standard automated perimetry by screening C-20-1 frequency doubling technology perimetry
    • Kamantigue ME, Joson PJ, Chen PP. Prediction of visual field defects on standard automated perimetry by screening C-20-1 frequency doubling technology perimetry. J Glaucoma. 2006; 15:35–39
    • (2006) J Glaucoma , vol.15 , pp. 35-39
    • Kamantigue, M.E.1    Joson, P.J.2    Chen, P.P.3
  • 13
    • 0345168106 scopus 로고    scopus 로고
    • Detection of early visual field loss in glaucoma using frequency-doubling perimetry and short-wavelength automated perimetry
    • Landers JA, Goldberg I, Graham SL. Detection of early visual field loss in glaucoma using frequency-doubling perimetry and short-wavelength automated perimetry. Arch Ophthalmol. 2003;121:1705–1710
    • (2003) Arch Ophthalmol , vol.121 , pp. 1705-1710
    • Landers, J.A.1    Goldberg, I.2    Graham, S.L.3
  • 14
    • 33644660462 scopus 로고    scopus 로고
    • Prediction of future scotoma on conventional automated static perimetry using frequency doubling technology perimetry
    • Kogure S, Toda Y, Tsukahara S. Prediction of future scotoma on conventional automated static perimetry using frequency doubling technology perimetry. Br J Ophthalmol. 2006;90: 347–352
    • (2006) Br J Ophthalmol , vol.90 , pp. 347-352
    • Kogure, S.1    Toda, Y.2    Tsukahara, S.3
  • 15
    • 2342517483 scopus 로고    scopus 로고
    • Frequency doubling technology perimetry abnormalities as predictors of glaucomatous visual field loss
    • Medeiros FA, Sample PA, Weinreb RN. Frequency doubling technology perimetry abnormalities as predictors of glaucomatous visual field loss. Am J Ophthalmol. 2004;137:863–871
    • (2004) Am J Ophthalmol , vol.137 , pp. 863-871
    • Medeiros, F.A.1    Sample, P.A.2    Weinreb, R.N.3
  • 16
    • 34247376284 scopus 로고    scopus 로고
    • Frequency doubling perimetry and short-wavelength automated perimetry to detect early glaucoma
    • Leeprechanon N, Giaconi JA, Manassakorn A, et al. Frequency doubling perimetry and short-wavelength automated perimetry to detect early glaucoma. Ophthalmology. 2007;114:931–937
    • (2007) Ophthalmology , vol.114 , pp. 931-937
    • Leeprechanon, N.1    Giaconi, J.A.2    Manassakorn, A.3
  • 17
    • 59449090562 scopus 로고    scopus 로고
    • Interpretation of the Humphrey Matrix 24-2 test in the diagnosis of preperimetric glaucoma
    • Choi JA, Lee NY, Park CK. Interpretation of the Humphrey Matrix 24-2 test in the diagnosis of preperimetric glaucoma. Jpn J Ophthalmol. 2009;53:24–30
    • (2009) Jpn J Ophthalmol , vol.53 , pp. 24-30
    • Choi, J.A.1    Lee, N.Y.2    Park, C.K.3
  • 18
    • 0027209047 scopus 로고
    • Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss
    • Johnson CA, Adams AJ, Casson EJ, et al. Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss. Arch Ophthalmol. 1993;111:645–650
    • (1993) Arch Ophthalmol , vol.111 , pp. 645-650
    • Johnson, C.A.1    Adams, A.J.2    Casson, E.J.3
  • 19
    • 0027513882 scopus 로고
    • Short-wavelength color visual fields in glaucoma suspects at risk
    • Sample PA, Taylor JD, Martinez GA, et al. Short-wavelength color visual fields in glaucoma suspects at risk. Am J Ophthalmol. 1993;115:225–233
    • (1993) Am J Ophthalmol , vol.115 , pp. 225-233
    • Sample, P.A.1    Taylor, J.D.2    Martinez, G.A.3
  • 20
    • 0027161746 scopus 로고
    • Progression of early glaucomatous visual field loss as detected by blue-on-yellow and standard white-on-white automated perimetry
    • Johnson CA, Adams AJ, Casson EJ, et al. Progression of early glaucomatous visual field loss as detected by blue-on-yellow and standard white-on-white automated perimetry. Arch Ophthalmol. 1993;111:651–656
    • (1993) Arch Ophthalmol , vol.111 , pp. 651-656
    • Johnson, C.A.1    Adams, A.J.2    Casson, E.J.3
  • 21
    • 84893087674 scopus 로고    scopus 로고
    • Heidelberg edge perimetry for the detection of early glaucomatous damage: A case report
    • Marvasti AH, Tatham AJ, Weinreb RN, et al. Heidelberg edge perimetry for the detection of early glaucomatous damage: a case report. Case Rep Ophthalmol. 2013;4:144–150
    • (2013) Case Rep Ophthalmol , vol.4 , pp. 144-150
    • Marvasti, A.H.1    Tatham, A.J.2    Weinreb, R.N.3
  • 23
    • 0004257968 scopus 로고    scopus 로고
    • Philadelphia, PA: Lippincott Williams & Wilkins
    • Shields MB. Textbook of Glaucoma. Philadelphia, PA: Lippincott Williams & Wilkins; 1997
    • (1997) Textbook of Glaucoma
    • Shields, M.B.1
  • 24
    • 0014466928 scopus 로고
    • The early field defects in glaucoma
    • Drance SM. The early field defects in glaucoma. Invest Ophthalmol. 1969;8:84–91
    • (1969) Invest Ophthalmol , vol.8 , pp. 84-91
    • Drance, S.M.1
  • 26
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman L. Random Forests. Machine Learning. 2001;45:5–32
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 27
    • 0041382385 scopus 로고    scopus 로고
    • Breiman L, Cutler A. Random Forests. 2004. Available at: http://www.stat.berkeley.edu/~breiman/RandomForests/cc_ home.htm. Accessed November 5, 2014
    • (2004) Random Forests
    • Breiman, L.1    Cutler, A.2
  • 28
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Diaz-Uriarte R, Alvarez de Andres S. Gene selection and classification of microarray data using random forest. BMC Bioinformatics. 2006;7:3
    • (2006) BMC Bioinformatics , vol.7
    • Diaz-Uriarte, R.1    De Alvarez Andres, S.2
  • 29
    • 33846856225 scopus 로고    scopus 로고
    • Random forest models to predict aqueous solubility
    • Palmer DS, O’Boyle NM, Glen RC, et al. Random forest models to predict aqueous solubility. J Chem Inf Model. 2007;47:150–158
    • (2007) J Chem Inf Model , vol.47 , pp. 150-158
    • Palmer, D.S.1    O’Boyle, N.M.2    Glen, R.C.3
  • 30
    • 0141738784 scopus 로고    scopus 로고
    • Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data
    • Wu B, Abbott T, Fishman D, et al. Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics. 2003;19:1636–1643
    • (2003) Bioinformatics , vol.19 , pp. 1636-1643
    • Wu, B.1    Abbott, T.2    Fishman, D.3
  • 31
    • 0345548657 scopus 로고    scopus 로고
    • Random forest: A classification and regression tool for compound classification and QSAR modeling
    • Svetnik V, Liaw A, Tong C, et al. Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci. 2003;43:1947–1958
    • (2003) J Chem Inf Comput Sci , vol.43 , pp. 1947-1958
    • Svetnik, V.1    Liaw, A.2    Tong, C.3
  • 32
    • 80051660823 scopus 로고    scopus 로고
    • Data mining methods in the prediction of Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests
    • Maroco J, Silva D, Rodrigues A, et al. Data mining methods in the prediction of Dementia: a real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests. BMC Res Notes. 2011;4:299
    • (2011) BMC Res Notes , vol.4
    • Maroco, J.1    Silva, D.2    Rodrigues, A.3
  • 33
    • 79955007464 scopus 로고    scopus 로고
    • Performance comparison of machine learning algorithms and number of independent components used in fMRI decoding of belief vs. Disbelief
    • Douglas PK, Harris S, Yuille A, et al. Performance comparison of machine learning algorithms and number of independent components used in fMRI decoding of belief vs. disbelief. Neuroimage. 2011;56:544–553
    • (2011) Neuroimage , vol.56 , pp. 544-553
    • Douglas, P.K.1    Harris, S.2    Yuille, A.3
  • 34
    • 84898922018 scopus 로고    scopus 로고
    • Combining multiple HRT parameters using the ‘Random Forests’ method improves the diagnostic accuracy of glaucoma, in emmetropic and highly myopic eyes
    • Asaoka R, Iwase A, Tsutsumi T, et al. Combining multiple HRT parameters using the ‘Random Forests’ method improves the diagnostic accuracy of glaucoma, in emmetropic and highly myopic eyes. Invest Ophthalmol Vis Sci. 2014;55:2482–2490
    • (2014) Invest Ophthalmol Vis Sci , vol.55 , pp. 2482-2490
    • Asaoka, R.1    Iwase, A.2    Tsutsumi, T.3
  • 36
    • 84867541978 scopus 로고    scopus 로고
    • A comparative study of pattern recognition classifiers to predict physical activities using smartphones and wearable body sensors
    • Kouris I, Koutsouris D. A comparative study of pattern recognition classifiers to predict physical activities using smartphones and wearable body sensors. Technol Health Care. 2012;20:263–275
    • (2012) Technol Health Care , vol.20 , pp. 263-275
    • Kouris, I.1    Koutsouris, D.2
  • 37
    • 0030060735 scopus 로고    scopus 로고
    • The effect of perimetric experience in patients with glaucoma
    • Heijl A, Bengtsson B. The effect of perimetric experience in patients with glaucoma. Arch Ophthalmol. 1996;114:19–22
    • (1996) Arch Ophthalmol , vol.114 , pp. 19-22
    • Heijl, A.1    Bengtsson, B.2
  • 38
    • 0024451703 scopus 로고
    • The influence of the learning effect on automated perimetry in patients with suspected glaucoma
    • Wild JM, Dengler-Harles M, Searle AE, et al. The influence of the learning effect on automated perimetry in patients with suspected glaucoma. Acta Ophthalmol (Copenh). 1989;67: 537–545
    • (1989) Acta Ophthalmol (Copenh) , vol.67 , pp. 537-545
    • Wild, J.M.1    Dengler-Harles, M.2    Searle, A.E.3
  • 40
    • 16244366026 scopus 로고
    • Index for rating diagnostic tests
    • Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3: 32–35
    • (1950) Cancer , vol.3 , pp. 32-35
    • Youden, W.J.1
  • 42
    • 0344329377 scopus 로고    scopus 로고
    • Ganglion cell losses underlying visual field defects from experimental glaucoma
    • Harwerth RS, Carter-Dawson L, Shen F, et al. Ganglion cell losses underlying visual field defects from experimental glaucoma. Invest Ophthalmol Vis Sci. 1999;40:2242–2250
    • (1999) Invest Ophthalmol Vis Sci , vol.40 , pp. 2242-2250
    • Harwerth, R.S.1    Carter-Dawson, L.2    Shen, F.3
  • 43
    • 0029757404 scopus 로고    scopus 로고
    • Early visual disturbances in glaucoma
    • Nordmann JP. Early visual disturbances in glaucoma. Curr Opin Ophthalmol. 1996;7:47–53
    • (1996) Curr Opin Ophthalmol , vol.7 , pp. 47-53
    • Nordmann, J.P.1
  • 44
    • 0024493171 scopus 로고
    • Visual field interpretation with empiric probability maps
    • Heijl A, Lindgren G, Olsson J, et al. Visual field interpretation with empiric probability maps. Arch Ophthalmol. 1989;107: 204–208
    • (1989) Arch Ophthalmol , vol.107 , pp. 204-208
    • Heijl, A.1    Lindgren, G.2    Olsson, J.3
  • 45
    • 71449083243 scopus 로고    scopus 로고
    • Specification of progression in glaucomatous visual field loss, applying locally condensed stimulus arrangements
    • Nevalainen J, Paetzold J, Papageorgiou E, et al. Specification of progression in glaucomatous visual field loss, applying locally condensed stimulus arrangements. Graefes Arch Clin Exp Ophthalmol. 2009;247:1659–1669
    • (2009) Graefes Arch Clin Exp Ophthalmol , vol.247 , pp. 1659-1669
    • Nevalainen, J.1    Paetzold, J.2    Papageorgiou, E.3
  • 46
    • 79953281246 scopus 로고    scopus 로고
    • The influence of sampling errors on test-retest variability in perimetry
    • Maddess T. The influence of sampling errors on test-retest variability in perimetry. Invest Ophthalmol Vis Sci. 2011;52: 1014–1022
    • (2011) Invest Ophthalmol Vis Sci , vol.52 , pp. 1014-1022
    • Maddess, T.1
  • 47
    • 0022617946 scopus 로고
    • What is the most suitable grid for computer perimetry in glaucoma patients?
    • Weber J, Dobek K. What is the most suitable grid for computer perimetry in glaucoma patients? Ophthalmologica. 1986;192: 88–96
    • (1986) Ophthalmologica , vol.192 , pp. 88-96
    • Weber, J.1    Dobek, K.2
  • 48
    • 84899652509 scopus 로고    scopus 로고
    • A method to measure visual field sensitivity at the edges of glaucomatous scotomata
    • Aoyama Y, Murata H, Tahara M, et al. A method to measure visual field sensitivity at the edges of glaucomatous scotomata. Invest Ophthalmol Vis Sci. 2014;55:2584–2591
    • (2014) Invest Ophthalmol Vis Sci , vol.55 , pp. 2584-2591
    • Aoyama, Y.1    Murata, H.2    Tahara, M.3
  • 49
    • 84896285980 scopus 로고    scopus 로고
    • Prevalence and nature of early glaucomatous defects in the central 10 degrees of the visual field
    • Traynis I, De Moraes CG, Raza AS, et al. Prevalence and nature of early glaucomatous defects in the central 10 degrees of the visual field. JAMA Ophthalmol. 2014;132:291–297
    • (2014) JAMA Ophthalmol , vol.132 , pp. 291-297
    • Traynis, I.1    De Moraes, C.G.2    Raza, A.S.3
  • 50
    • 54949138371 scopus 로고    scopus 로고
    • The accuracy and clinical application of predictive models for primary openangle glaucoma in ocular hypertensive individuals
    • Ocular Hypertension Treatment Study Group and the European Glaucoma Prevention Study Group. The accuracy and clinical application of predictive models for primary openangle glaucoma in ocular hypertensive individuals. Ophthalmology. 2008;115:2030–2036.
    • (2008) Ophthalmology , vol.115 , pp. 2030-2036


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.