메뉴 건너뛰기




Volumn 7, Issue 12, 2015, Pages 3426-3433

Low temperature adaptation is not the opposite process of high temperature adaptation in terms of changes in amino acid composition

Author keywords

Amino acid composition; Asymmetric substitution; Homologous protein; Low temperature adaptation

Indexed keywords

PROTEOME;

EID: 84982118643     PISSN: None     EISSN: 17596653     Source Type: Journal    
DOI: 10.1093/gbe/evv232     Document Type: Article
Times cited : (24)

References (54)
  • 1
    • 77950213736 scopus 로고    scopus 로고
    • The genome sequence of Psychrobacter arcticus 273-4, a psychroactive Siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth
    • Ayala-del-Rio HL, et al. 2010. The genome sequence of Psychrobacter arcticus 273-4, a psychroactive Siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth. Appl Environ Microbiol. 76:2304-2312.
    • (2010) Appl Environ Microbiol. , vol.76 , pp. 2304-2312
    • Ayala-Del-Rio, H.L.1
  • 2
    • 34047232678 scopus 로고    scopus 로고
    • Positive and negative design in stability and thermal adaptation of natural proteins
    • Berezovsky IN, Zeldovich KB, Shakhnovich EI. 2007. Positive and negative design in stability and thermal adaptation of natural proteins. PLoS Comput Biol. 3:498-507.
    • (2007) PLoS Comput Biol. , vol.3 , pp. 498-507
    • Berezovsky, I.N.1    Zeldovich, K.B.2    Shakhnovich, E.I.3
  • 3
    • 57749185463 scopus 로고    scopus 로고
    • Parallel adaptations to high temperatures in the Archaean eon
    • Boussau B, Blanquart S, Necsulea A, Lartillot N, Gouy M. 2008. Parallel adaptations to high temperatures in the Archaean eon. Nature 456:942-945.
    • (2008) Nature , vol.456 , pp. 942-945
    • Boussau, B.1    Blanquart, S.2    Necsulea, A.3    Lartillot, N.4    Gouy, M.5
  • 4
    • 34250896106 scopus 로고    scopus 로고
    • Widespread distribution of archaeal reverse gyrase in thermophilic bacteria suggests a complex history of vertical inheritance and lateral gene transfers
    • Brochier-Armanet C, Forterre P. 2007.Widespread distribution of archaeal reverse gyrase in thermophilic bacteria suggests a complex history of vertical inheritance and lateral gene transfers. Archaea 2:83-93.
    • (2007) Archaea , vol.2 , pp. 83-93
    • Brochier-Armanet, C.1    Forterre, P.2
  • 5
    • 77955279422 scopus 로고    scopus 로고
    • Molecular adaptations to psychrophily: The impact of 'omic' technologies
    • Casanueva A, Tuffin M, Cary C, Cowan DA. 2010. Molecular adaptations to psychrophily: the impact of 'omic' technologies. Trends Microbiol. 18:374-381.
    • (2010) Trends Microbiol. , vol.18 , pp. 374-381
    • Casanueva, A.1    Tuffin, M.2    Cary, C.3    Cowan, D.A.4
  • 6
    • 84899840592 scopus 로고    scopus 로고
    • Some like it cold: Understanding the survival strategies of psychrophiles
    • De Maayer P, Anderson D, Cary C, Cowan DA. 2014. Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep 15:508-517.
    • (2014) EMBO Rep , vol.15 , pp. 508-517
    • De Maayer, P.1    Anderson, D.2    Cary, C.3    Cowan, D.A.4
  • 7
    • 36448995059 scopus 로고    scopus 로고
    • Adaptation of model proteins from cold to hot environments involves continuous and small adjustments of average parameters related to amino acid composition
    • De Vendittis E, et al. 2008. Adaptation of model proteins from cold to hot environments involves continuous and small adjustments of average parameters related to amino acid composition. J Theor Biol. 250:156-171.
    • (2008) J Theor Biol. , vol.250 , pp. 156-171
    • De Vendittis, E.1
  • 8
    • 77956912541 scopus 로고    scopus 로고
    • Protein stability and enzyme activity at extreme biological temperatures
    • Feller G. 2010. Protein stability and enzyme activity at extreme biological temperatures. J Phys Condens Matter 22:323101.
    • (2010) J Phys Condens Matter , vol.22 , pp. 323101
    • Feller, G.1
  • 9
    • 1842509102 scopus 로고    scopus 로고
    • Psychrophilic enzymes: Hot topics in cold adaptation
    • Feller G, Gerday C. 2003. Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol. 1:200-208.
    • (2003) Nat Rev Microbiol. , vol.1 , pp. 200-208
    • Feller, G.1    Gerday, C.2
  • 10
    • 84946235568 scopus 로고    scopus 로고
    • Adaptations of protein structure and function to temperature: There is more than one way to 'skin a cat'
    • Fields PA, Dong Y, Meng X, Somero GN. 2015. Adaptations of protein structure and function to temperature: there is more than one way to 'skin a cat'. J Exp Biol. 218:1801-1811.
    • (2015) J Exp Biol. , vol.218 , pp. 1801-1811
    • Fields, P.A.1    Dong, Y.2    Meng, X.3    Somero, G.N.4
  • 11
    • 0036574857 scopus 로고    scopus 로고
    • A hot story from comparative genomics: Reverse gyrase is the only hyperthermophile-specific protein
    • Forterre P. 2002. A hot story from comparative genomics: reverse gyrase is the only hyperthermophile-specific protein. Trends Genet. 18:236-237.
    • (2002) Trends Genet. , vol.18 , pp. 236-237
    • Forterre, P.1
  • 12
    • 0035876479 scopus 로고    scopus 로고
    • Protein surface amino acid compositions distinctively differ between thermophilic and mesophilic bacteria
    • Fukuchi S, Nishikawa K. 2001. Protein surface amino acid compositions distinctively differ between thermophilic and mesophilic bacteria. J Mol Biol. 309:835-843.
    • (2001) J Mol Biol. , vol.309 , pp. 835-843
    • Fukuchi, S.1    Nishikawa, K.2
  • 13
    • 0033534584 scopus 로고    scopus 로고
    • A nonhyperthermophilic common ancestor to extant life forms
    • Galtier N, Tourasse N, Gouy M. 1999. A nonhyperthermophilic common ancestor to extant life forms. Science 283:220-221.
    • (1999) Science , vol.283 , pp. 220-221
    • Galtier, N.1    Tourasse, N.2    Gouy, M.3
  • 14
    • 38949093003 scopus 로고    scopus 로고
    • Palaeotemperature trend for Precambrian life inferred from resurrected proteins
    • Gaucher EA, Govindara Jan S, Ganesh OK. 2008. Palaeotemperature trend for Precambrian life inferred from resurrected proteins. Nature 451:704-707.
    • (2008) Nature , vol.451 , pp. 704-707
    • Gaucher, E.A.1    Govindara Jan, S.2    Ganesh, O.K.3
  • 15
    • 34548730241 scopus 로고    scopus 로고
    • Different packing of external residues can explain differences in the thermostability of proteins from thermophilic and mesophilic organisms
    • Glyakina AV, Garbuzynskiy SO, Lobanov MY, Galzitskaya OV. 2007. Different packing of external residues can explain differences in the thermostability of proteins from thermophilic and mesophilic organisms. Bioinformatics 23:2231-2238.
    • (2007) Bioinformatics , vol.23 , pp. 2231-2238
    • Glyakina, A.V.1    Garbuzynskiy, S.O.2    Lobanov, M.Y.3    Galzitskaya, O.V.4
  • 16
    • 33845679397 scopus 로고    scopus 로고
    • A single proline substitution is critical for the thermostabilization of Clostridium beijerinckii alcohol dehydrogenase
    • Goihberg E, et al. 2007. A single proline substitution is critical for the thermostabilization of Clostridium beijerinckii alcohol dehydrogenase. Proteins 66:196-204.
    • (2007) Proteins , vol.66 , pp. 196-204
    • Goihberg, E.1
  • 18
    • 0033616712 scopus 로고    scopus 로고
    • Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species
    • Haney PJ, et al. 1999. Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Proc Natl Acad Sci U S A. 96:3578-3583.
    • (1999) Proc Natl Acad Sci U S A. , vol.96 , pp. 3578-3583
    • Haney, P.J.1
  • 19
    • 84855870416 scopus 로고    scopus 로고
    • On the origin and evolution of thermophily: Reconstruction of functional precambrian enzymes from ancestors of Bacillus
    • Hobbs JK, et al. 2012. On the origin and evolution of thermophily: reconstruction of functional precambrian enzymes from ancestors of Bacillus. Mol Biol Evol. 29:825-835.
    • (2012) Mol Biol Evol. , vol.29 , pp. 825-835
    • Hobbs, J.K.1
  • 20
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on positionspecific scoring matrices
    • Jones DT. 1999. Protein secondary structure prediction based on positionspecific scoring matrices. J Mol Biol. 292:195-202.
    • (1999) J Mol Biol. , vol.292 , pp. 195-202
    • Jones, D.T.1
  • 21
    • 84866125205 scopus 로고    scopus 로고
    • Thermal adaptation of the archaeal and bacterial lipid membranes
    • Koga Y. 2012. Thermal adaptation of the archaeal and bacterial lipid membranes. Archaea 2012:789652.
    • (2012) Archaea , vol.2012 , pp. 789652
    • Koga, Y.1
  • 22
    • 0035910270 scopus 로고    scopus 로고
    • Predicting transmembrane protein topology with a Hidden Markov Model: Application to complete genomes
    • Krogh A, Larsson B, von Heijne G, Sonnhammer EL. 2001. Predicting transmembrane protein topology with a Hidden Markov Model: application to complete genomes. J Mol Biol. 305:567-580.
    • (2001) J Mol Biol. , vol.305 , pp. 567-580
    • Krogh, A.1    Larsson, B.2    Von Heijne, G.3    Sonnhammer, E.L.4
  • 23
    • 36448991500 scopus 로고    scopus 로고
    • ClustalWand Clustal X version 2.0
    • Larkin MA, et al. 2007. ClustalWand Clustal X version 2.0. Bioinformatics 23:2947-2948.
    • (2007) Bioinformatics , vol.23 , pp. 2947-2948
    • Larkin, M.A.1
  • 24
    • 0141519279 scopus 로고    scopus 로고
    • OrthoMCL: Identification of ortholog groups for eukaryotic genomes
    • Li L, Stoeckert CJ, Roos DS. 2003. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13:2178-2189.
    • (2003) Genome Res. , vol.13 , pp. 2178-2189
    • Li, L.1    Stoeckert, C.J.2    Roos, D.S.3
  • 26
    • 77954653180 scopus 로고    scopus 로고
    • Thermophilic adaptation of protein complexes inferred from proteomic homology modeling
    • Ma BG, Goncearenco A, Berezovsky IN. 2010. Thermophilic adaptation of protein complexes inferred from proteomic homology modeling. Structure 18:819-828.
    • (2010) Structure , vol.18 , pp. 819-828
    • Ma, B.G.1    Goncearenco, A.2    Berezovsky, I.N.3
  • 27
    • 60549110049 scopus 로고    scopus 로고
    • Structural adaptation of the subunit interface of oligomeric thermophilic and hyperthermophilic enzymes
    • Maugini E, Tronelli D, Bossa F, Pascarella S. 2009. Structural adaptation of the subunit interface of oligomeric thermophilic and hyperthermophilic enzymes. Comput Biol Chem. 33:137-148.
    • (2009) Comput Biol Chem. , vol.33 , pp. 137-148
    • Maugini, E.1    Tronelli, D.2    Bossa, F.3    Pascarella, S.4
  • 28
    • 0035027423 scopus 로고    scopus 로고
    • Patterns of temperature adaptation in proteins from the bacteria Deinococcus radiodurans and Thermus thermophilus
    • McDonald JH. 2001. Patterns of temperature adaptation in proteins from the bacteria Deinococcus radiodurans and Thermus thermophilus. Mol Biol Evol. 18:741-749.
    • (2001) Mol Biol Evol. , vol.18 , pp. 741-749
    • McDonald, J.H.1
  • 29
    • 77958506254 scopus 로고    scopus 로고
    • Temperature adaptation at homologous sites in proteins from nine thermophile-mesophile species pairs
    • McDonald JH. 2010. Temperature adaptation at homologous sites in proteins from nine thermophile-mesophile species pairs. Genome Biol Evol. 2:267-276.
    • (2010) Genome Biol Evol. , vol.2 , pp. 267-276
    • McDonald, J.H.1
  • 30
    • 23344439437 scopus 로고    scopus 로고
    • The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses
    • MethéBA, et al. 2005. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci U S A. 102:10913-10918.
    • (2005) Proc Natl Acad Sci U S A. , vol.102 , pp. 10913-10918
    • Methé, B.A.1
  • 31
    • 62349120035 scopus 로고    scopus 로고
    • Comparative proteome analysis of psychrophilic versus mesophilic bacterial species: Insights into the molecular basis of cold adaptation of proteins
    • Metpally RP, Reddy BV. 2009. Comparative proteome analysis of psychrophilic versus mesophilic bacterial species: insights into the molecular basis of cold adaptation of proteins. BMC Genomics 10:11.
    • (2009) BMC Genomics , vol.10 , pp. 11
    • Metpally, R.P.1    Reddy, B.V.2
  • 32
    • 0038583819 scopus 로고    scopus 로고
    • Compositional changes in RNA, DNA and proteins for bacterial adaptation to higher and lower temperatures
    • Nakashima H, Fukuchi S, Nishikawa K. 2003. Compositional changes in RNA, DNA and proteins for bacterial adaptation to higher and lower temperatures. J Biochem. 133:507-513.
    • (2003) J Biochem. , vol.133 , pp. 507-513
    • Nakashima, H.1    Fukuchi, S.2    Nishikawa, K.3
  • 33
    • 80054703699 scopus 로고    scopus 로고
    • Comparative void-volume analysis of psychrophilic and mesophilic enzymes: Structural bioinformatics of psychrophilic enzymes reveals sources of core flexibility
    • Paredes DI, Watters K, Pitman DJ, Bystroff C, Dordick JS. 2011. Comparative void-volume analysis of psychrophilic and mesophilic enzymes: structural bioinformatics of psychrophilic enzymes reveals sources of core flexibility. BMC Struct Biol. 11:42.
    • (2011) BMC Struct Biol. , vol.11 , pp. 42
    • Paredes, D.I.1    Watters, K.2    Pitman, D.J.3    Bystroff, C.4    Dordick, J.S.5
  • 34
    • 84923777263 scopus 로고    scopus 로고
    • Structural prediction of a novel laminarinase from the psychrophilic Glaciozyma antarctica PI12 and its temperature adaptation analysis
    • Parvizpour S, Razmara J, Jomah AF, Shamsir MS, Illias RM. 2015. Structural prediction of a novel laminarinase from the psychrophilic Glaciozyma antarctica PI12 and its temperature adaptation analysis. J Mol Model 21:63.
    • (2015) J Mol Model , vol.21 , pp. 63
    • Parvizpour, S.1    Razmara, J.2    Jomah, A.F.3    Shamsir, M.S.4    Illias, R.M.5
  • 35
    • 70349970427 scopus 로고    scopus 로고
    • Dynamic properties of a psychrophilic alpha-amylase in comparison with a mesophilic homologue
    • Pasi M, Riccardi L, Fantucci P, De Gioia L, Papaleo E. 2009. Dynamic properties of a psychrophilic alpha-amylase in comparison with a mesophilic homologue. J Phys Chem B. 113:13585-13595.
    • (2009) J Phys Chem B. , vol.113 , pp. 13585-13595
    • Pasi, M.1    Riccardi, L.2    Fantucci, P.3    De Gioia, L.4    Papaleo, E.5
  • 36
    • 37349101689 scopus 로고    scopus 로고
    • Gaining and losing the thermophilic adaptation in prokaryotes
    • Puigbò P, Pasamontes A, Garcia-Vallve S. 2008. Gaining and losing the thermophilic adaptation in prokaryotes. Trends Genet. 24:10-14.
    • (2008) Trends Genet. , vol.24 , pp. 10-14
    • Puigbò, P.1    Pasamontes, A.2    Garcia-Vallve, S.3
  • 37
    • 34047216653 scopus 로고    scopus 로고
    • Directed evolution of Tksubtilisin from a hyperthermophilic archaeon: Identification of a single amino acid substitution responsible for low-temperature adaptation
    • Pulido MA, Koga Y, Takano K, Kanaya S. 2007. Directed evolution of Tksubtilisin from a hyperthermophilic archaeon: identification of a single amino acid substitution responsible for low-temperature adaptation. Protein Eng Des Sel 20:143-153.
    • (2007) Protein Eng des Sel , vol.20 , pp. 143-153
    • Pulido, M.A.1    Koga, Y.2    Takano, K.3    Kanaya, S.4
  • 38
    • 84963641621 scopus 로고    scopus 로고
    • Vienna (Austria): R Foundation for Statistical Computing
    • R Core Team. 2014. R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing. Available from: http://www.R-project.org/.
    • (2014) R: A Language and Environment for Statistical Computing
  • 40
    • 32044454841 scopus 로고    scopus 로고
    • Effective factors in thermostability of thermophilic proteins
    • Sadeghi M, Naderi-Manesh H, Zarrabi M, Ranjbar B. 2006. Effective factors in thermostability of thermophilic proteins. Biophys Chem. 119:256-270.
    • (2006) Biophys Chem. , vol.119 , pp. 256-270
    • Sadeghi, M.1    Naderi-Manesh, H.2    Zarrabi, M.3    Ranjbar, B.4
  • 41
    • 0038824870 scopus 로고    scopus 로고
    • Mechanisms of thermal adaptation revealed from the genomes of the Antarctic archaea Methanogenium frigidum and Methanococcoides burtonii
    • Saunders NF, et al. 2003. Mechanisms of thermal adaptation revealed from the genomes of the Antarctic archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Res. 13:1580-1588.
    • (2003) Genome Res. , vol.13 , pp. 1580-1588
    • Saunders, N.F.1
  • 42
    • 84901262892 scopus 로고    scopus 로고
    • Humboldt's spa: Microbial diversity is controlled by temperature in geothermal environments
    • Sharp CE, et al. 2014. Humboldt's spa: microbial diversity is controlled by temperature in geothermal environments. Isme J. 8:1166-1174.
    • (2014) Isme J. , vol.8 , pp. 1166-1174
    • Sharp, C.E.1
  • 43
    • 71849112061 scopus 로고    scopus 로고
    • Structural adaptation of serine hydroxymethyltransferase to low temperatures
    • Siglioccolo A, Bossa F, Pascarella S. 2010. Structural adaptation of serine hydroxymethyltransferase to low temperatures. Int J Biol Macromol 46:37-46.
    • (2010) Int J Biol Macromol , vol.46 , pp. 37-46
    • Siglioccolo, A.1    Bossa, F.2    Pascarella, S.3
  • 44
    • 0242290154 scopus 로고    scopus 로고
    • Thermophilic prokaryotes have characteristic patterns of codon usage, amino acid composition and nucleotide content
    • Singer GAC, Hickey DA. 2003. Thermophilic prokaryotes have characteristic patterns of codon usage, amino acid composition and nucleotide content. Gene 317:39-47.
    • (2003) Gene , vol.317 , pp. 39-47
    • Singer, G.A.C.1    Hickey, D.A.2
  • 46
    • 84866927713 scopus 로고    scopus 로고
    • Optimization to low temperature activity in psychrophilic enzymes
    • Struvay C, Feller G. 2012. Optimization to low temperature activity in psychrophilic enzymes. Int J Mol Sci. 13:11643-11665.
    • (2012) Int J Mol Sci. , vol.13 , pp. 11643-11665
    • Struvay, C.1    Feller, G.2
  • 47
    • 0037931826 scopus 로고    scopus 로고
    • Genomic correlates of hyperthermostability, an update
    • Suhre H, Claverie JM. 2003. Genomic correlates of hyperthermostability, an update. J Biol Chem. 278:17198-17202.
    • (2003) J Biol Chem. , vol.278 , pp. 17198-17202
    • Suhre, H.1    Claverie, J.M.2
  • 48
    • 0034798511 scopus 로고    scopus 로고
    • A new scale for side-chain contribution to protein stability based on the empirical stability analysis of mutant protines
    • Takano K, Yutani K. 2001. A new scale for side-chain contribution to protein stability based on the empirical stability analysis of mutant protines. Protein Eng 14:535-538.
    • (2001) Protein Eng , vol.14 , pp. 535-538
    • Takano, K.1    Yutani, K.2
  • 49
    • 38149128080 scopus 로고    scopus 로고
    • Protein thermostability in archaea and eubacteria
    • Trivedi S, Gehlot HS, Rao SR. 2006. Protein thermostability in archaea and eubacteria. Genet Mol Res. 5:816-827.
    • (2006) Genet Mol Res. , vol.5 , pp. 816-827
    • Trivedi, S.1    Gehlot, H.S.2    Rao, S.R.3
  • 50
    • 48349109787 scopus 로고    scopus 로고
    • How does gene expression level contribute to thermophilic adaptation of prokaryotes? An exploration based on predictors
    • Wang J, Ma BG, Zhang HY, Chen LL, Zhang SC. 2008. How does gene expression level contribute to thermophilic adaptation of prokaryotes? An exploration based on predictors. Gene 421:32-36.
    • (2008) Gene , vol.421 , pp. 32-36
    • Wang, J.1    Ma, B.G.2    Zhang, H.Y.3    Chen, L.L.4    Zhang, S.C.5
  • 51
    • 84881105793 scopus 로고    scopus 로고
    • Structure-and sequence-analysis inspired engineering of proteins for enhanced thermostability
    • Wijma HJ, Floor RJ, Janssen DB. 2013. Structure-and sequence-analysis inspired engineering of proteins for enhanced thermostability. Curr Opin Struct Biol. 23:588-594.
    • (2013) Curr Opin Struct Biol. , vol.23 , pp. 588-594
    • Wijma, H.J.1    Floor, R.J.2    Janssen, D.B.3
  • 52
    • 66149121843 scopus 로고    scopus 로고
    • Cold adaptation of zinc metalloproteases in the thermolysin family from deep sea and arctic sea ice bacteria revealed by catalytic and structural properties and molecular dynamics: New insights into relationship between conformational flexibility and hydrogen bonding
    • Xie BB, et al. 2009. Cold adaptation of zinc metalloproteases in the thermolysin family from deep sea and arctic sea ice bacteria revealed by catalytic and structural properties and molecular dynamics: new insights into relationship between conformational flexibility and hydrogen bonding. J Biol Chem. 284:9257-9269.
    • (2009) J Biol Chem. , vol.284 , pp. 9257-9269
    • Xie, B.B.1
  • 54
    • 77949385168 scopus 로고    scopus 로고
    • Shewanella spp. Genomic evolution for a cold marine lifestyle and in-situ explosive biodegradation
    • Zhao JS, Deng Y, Manno D, Hawari J. 2010. Shewanella spp. genomic evolution for a cold marine lifestyle and in-situ explosive biodegradation. PLoS One 5:e9109.
    • (2010) PLoS One , vol.5 , pp. e9109
    • Zhao, J.S.1    Deng, Y.2    Manno, D.3    Hawari, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.