-
1
-
-
85023205150
-
Matrix multiplication via arithmetic progressions
-
D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J. Symb. Comput., 9(3):251-280, 1990.
-
(1990)
J. Symb. Comput.
, vol.9
, Issue.3
, pp. 251-280
-
-
Coppersmith, D.1
Winograd, S.2
-
2
-
-
78649914423
-
Performance of recommender algorithms on top-n recommendation tasks
-
P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender algorithms on top-n recommendation tasks. In RecSys 2010, pages 39-46.
-
RecSys 2010
, pp. 39-46
-
-
Cremonesi, P.1
Koren, Y.2
Turrin, R.3
-
3
-
-
35348914807
-
Google news personalization: Scalable online collaborative filtering
-
A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization: Scalable online collaborative filtering. In www 2007, pages 271-280.
-
Www 2007
, pp. 271-280
-
-
Das, A.S.1
Datar, M.2
Garg, A.3
Rajaram, S.4
-
4
-
-
84954158205
-
Dynamic matrix factorization with priors on unknown values
-
R. Devooght, N. Kourtellis, and A. Mantrach. Dynamic matrix factorization with priors on unknown values. In KDD 2015, pages 189-198.
-
KDD 2015
, pp. 189-198
-
-
Devooght, R.1
Kourtellis, N.2
Mantrach, A.3
-
6
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res., 12:2121-2159, 2011.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2121-2159
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
7
-
-
80052668032
-
Large-scale matrix factorization with distributed stochastic gradient descent
-
R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-scale matrix factorization with distributed stochastic gradient descent. In KDD 2011, pages 69-77.
-
KDD 2011
, pp. 69-77
-
-
Gemulla, R.1
Nijkamp, E.2
Haas, P.J.3
Sismanis, Y.4
-
8
-
-
84973866015
-
Learning image and user features for recommendation in social networks
-
X. Geng, H. Zhang, J. Bian, and T.-S. Chua. Learning image and user features for recommendation in social networks. In ICCV 2015, pages 4274-4282.
-
ICCV 2015
, pp. 4274-4282
-
-
Geng, X.1
Zhang, H.2
Bian, J.3
Chua, T.-S.4
-
9
-
-
84959275581
-
Trirank: Review-aware explainable recommendation by modeling aspects
-
X. He, T. Chen, M.-Y. Kan, and X. Chen. Trirank: Review-aware explainable recommendation by modeling aspects. In CIKM 2015, pages 1661-1670.
-
CIKM 2015
, pp. 1661-1670
-
-
He, X.1
Chen, T.2
Kan, M.-Y.3
Chen, X.4
-
10
-
-
84904580359
-
Predicting the popularity of web 2.0 items based on user comments
-
X. He, M. Gao, M.-Y. Kan, Y. Liu, and K. Sugiyama. Predicting the popularity of web 2.0 items based on user comments. In SIGIR 2014, pages 233-242.
-
SIGIR 2014
, pp. 233-242
-
-
He, X.1
Gao, M.2
Kan, M.-Y.3
Liu, Y.4
Sugiyama, K.5
-
11
-
-
84904569042
-
Comment-based multi-view clustering of web 2.0 items
-
X. He, M.-Y. Kan, P. Xie, and X. Chen. Comment-based multi-view clustering of web 2.0 items. In Proc. of www '14, pages 771-782, 2014.
-
(2014)
Proc. of Www '14
, pp. 771-782
-
-
He, X.1
Kan, M.-Y.2
Xie, P.3
Chen, X.4
-
12
-
-
67049164166
-
Collaborative filtering for implicit feedback datasets
-
Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In ICDM 2008, pages 263-272.
-
ICDM 2008
, pp. 263-272
-
-
Hu, Y.1
Koren, Y.2
Volinsky, C.3
-
13
-
-
84957028575
-
Tencentrec: Real-time stream recommendation in practice
-
Y. Huang, B. Cui, W. Zhang, J. Jiang, and Y. Xu. Tencentrec: Real-time stream recommendation in practice. In SIGMOD 2015, pages 227-238.
-
SIGMOD 2015
, pp. 227-238
-
-
Huang, Y.1
Cui, B.2
Zhang, W.3
Jiang, J.4
Xu, Y.5
-
14
-
-
70350647708
-
Collaborative filtering with temporal dynamics
-
Y. Koren. Collaborative filtering with temporal dynamics. In KDD 2009, pages 447-456.
-
KDD 2009
, pp. 447-456
-
-
Koren, Y.1
-
15
-
-
80052883059
-
Advances in collaborative filtering
-
Springer
-
Y. Koren and R. Bell. Advances in collaborative filtering. In Recommender systems handbook, pages 145-186. Springer, 2011.
-
(2011)
Recommender Systems Handbook
, pp. 145-186
-
-
Koren, Y.1
Bell, R.2
-
16
-
-
84937861081
-
Neural word embedding as implicit matrix factorization
-
O. Levy and Y. Goldberg. Neural word embedding as implicit matrix factorization. In NIPS 2014, pages 2177-2185.
-
NIPS 2014
, pp. 2177-2185
-
-
Levy, O.1
Goldberg, Y.2
-
18
-
-
58149183811
-
Collaborative filtering and the missing at random assumption
-
B. M. Marlin, R. S. Zemel, S. Roweis, and M. Slaney. Collaborative filtering and the missing at random assumption. In UAI 2007, pages 267-276.
-
UAI 2007
, pp. 267-276
-
-
Marlin, B.M.1
Zemel, R.S.2
Roweis, S.3
Slaney, M.4
-
19
-
-
84898956512
-
Distributed representations of words and phrases and their compositionality
-
T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In NIPS 2013, pages 3111-3119.
-
NIPS 2013
, pp. 3111-3119
-
-
Mikolov, T.1
Sutskever, I.2
Chen, K.3
Corrado, G.S.4
Dean, J.5
-
20
-
-
70350623327
-
Mind the gaps: Weighting the unknown in large-scale one-class collaborative filtering
-
R. Pan and M. Scholz. Mind the gaps: Weighting the unknown in large-scale one-class collaborative filtering. In KDD 2009, pages 667-676.
-
KDD 2009
, pp. 667-676
-
-
Pan, R.1
Scholz, M.2
-
21
-
-
67149083078
-
One-class collaborative filtering
-
R. Pan, Y. Zhou, B. Cao, N. Liu, R. Lukose, M. Scholz, and Q. Yang. One-class collaborative filtering. In ICDM 2008, pages 502-511.
-
ICDM 2008
, pp. 502-511
-
-
Pan, R.1
Zhou, Y.2
Cao, B.3
Liu, N.4
Lukose, R.5
Scholz, M.6
Yang, Q.7
-
22
-
-
84961289992
-
Glove: Global vectors for word representation
-
J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In EMNLP 2014, pages 1532-1543.
-
EMNLP 2014
, pp. 1532-1543
-
-
Pennington, J.1
Socher, R.2
Manning, C.D.3
-
23
-
-
78649966572
-
Fast als-based matrix factorization for explicit and implicit feedback datasets
-
I. Pilászy, D. Zibriczky, and D. Tikk. Fast als-based matrix factorization for explicit and implicit feedback datasets. In RecSys 2010, pages 71-78.
-
RecSys 2010
, pp. 71-78
-
-
Pilászy, I.1
Zibriczky, D.2
Tikk, D.3
-
24
-
-
84906871528
-
Improving pairwise learning for item recommendation from implicit feedback
-
S. Rendle and C. Freudenthaler. Improving pairwise learning for item recommendation from implicit feedback. In WSDM 2014, pages 273-282.
-
WSDM 2014
, pp. 273-282
-
-
Rendle, S.1
Freudenthaler, C.2
-
27
-
-
63449105336
-
Online-updating regularized kernel matrix factorization models for large scale recommender systems
-
S. Rendle and L. Schmidt-Thieme. Online-updating regularized kernel matrix factorization models for large scale recommender systems. In RecSys 2008, pages 251-258.
-
RecSys 2008
, pp. 251-258
-
-
Rendle, S.1
Schmidt-Thieme, L.2
-
28
-
-
84897116612
-
Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function
-
P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function. Math. Prog., 2014.
-
(2014)
Math. Prog.
-
-
Richtárik, P.1
Takáč, M.2
-
29
-
-
84962699841
-
Machine learning: The high interest credit card of technical debt
-
D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary, and M. Young. Machine learning: The high interest credit card of technical debt. In SE4ML (NIPS 2014 Workshop), 2014.
-
(2014)
SE4ML (NIPS 2014 Workshop)
-
-
Sculley, D.1
Holt, G.2
Golovin, D.3
Davydov, E.4
Phillips, T.5
Ebner, D.6
Chaudhary, V.7
Young, M.8
-
30
-
-
77956208065
-
Training and testing of recommender systems on data missing not at random
-
H. Steck. Training and testing of recommender systems on data missing not at random. In KDD 2010, pages 713-722.
-
KDD 2010
, pp. 713-722
-
-
Steck, H.1
-
31
-
-
84953791801
-
Effective latent models for binary feedback in recommender systems
-
M. Volkovs and G. W. Yu. Effective latent models for binary feedback in recommender systems. In SIGIR 2015, pages 313-322.
-
SIGIR 2015
, pp. 313-322
-
-
Volkovs, M.1
Yu, G.W.2
-
32
-
-
84980322368
-
Discrete collaborative filtering
-
H. Zhang, F. Shen, W. Liu, X. He, H. Luan, and T.-S. Chua. Discrete collaborative filtering. In SIGIR 2016.
-
(2016)
SIGIR
-
-
Zhang, H.1
Shen, F.2
Liu, W.3
He, X.4
Luan, H.5
Chua, T.-S.6
|