메뉴 건너뛰기




Volumn , Issue , 2016, Pages 549-558

Fast matrix factorization for online recommendation with implicit feedback

Author keywords

ALS; Coordinate descent; Implicit feedback; Item recommendation; Matrix factorization; Online learning

Indexed keywords

ALUMINUM; EFFICIENCY; FACTORIZATION; INFORMATION RETRIEVAL; LEARNING ALGORITHMS;

EID: 84980329382     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2911451.2911489     Document Type: Conference Paper
Times cited : (1126)

References (32)
  • 1
    • 85023205150 scopus 로고
    • Matrix multiplication via arithmetic progressions
    • D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J. Symb. Comput., 9(3):251-280, 1990.
    • (1990) J. Symb. Comput. , vol.9 , Issue.3 , pp. 251-280
    • Coppersmith, D.1    Winograd, S.2
  • 2
    • 78649914423 scopus 로고    scopus 로고
    • Performance of recommender algorithms on top-n recommendation tasks
    • P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender algorithms on top-n recommendation tasks. In RecSys 2010, pages 39-46.
    • RecSys 2010 , pp. 39-46
    • Cremonesi, P.1    Koren, Y.2    Turrin, R.3
  • 3
    • 35348914807 scopus 로고    scopus 로고
    • Google news personalization: Scalable online collaborative filtering
    • A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization: Scalable online collaborative filtering. In www 2007, pages 271-280.
    • Www 2007 , pp. 271-280
    • Das, A.S.1    Datar, M.2    Garg, A.3    Rajaram, S.4
  • 4
    • 84954158205 scopus 로고    scopus 로고
    • Dynamic matrix factorization with priors on unknown values
    • R. Devooght, N. Kourtellis, and A. Mantrach. Dynamic matrix factorization with priors on unknown values. In KDD 2015, pages 189-198.
    • KDD 2015 , pp. 189-198
    • Devooght, R.1    Kourtellis, N.2    Mantrach, A.3
  • 6
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res., 12:2121-2159, 2011.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 7
    • 80052668032 scopus 로고    scopus 로고
    • Large-scale matrix factorization with distributed stochastic gradient descent
    • R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-scale matrix factorization with distributed stochastic gradient descent. In KDD 2011, pages 69-77.
    • KDD 2011 , pp. 69-77
    • Gemulla, R.1    Nijkamp, E.2    Haas, P.J.3    Sismanis, Y.4
  • 8
    • 84973866015 scopus 로고    scopus 로고
    • Learning image and user features for recommendation in social networks
    • X. Geng, H. Zhang, J. Bian, and T.-S. Chua. Learning image and user features for recommendation in social networks. In ICCV 2015, pages 4274-4282.
    • ICCV 2015 , pp. 4274-4282
    • Geng, X.1    Zhang, H.2    Bian, J.3    Chua, T.-S.4
  • 9
    • 84959275581 scopus 로고    scopus 로고
    • Trirank: Review-aware explainable recommendation by modeling aspects
    • X. He, T. Chen, M.-Y. Kan, and X. Chen. Trirank: Review-aware explainable recommendation by modeling aspects. In CIKM 2015, pages 1661-1670.
    • CIKM 2015 , pp. 1661-1670
    • He, X.1    Chen, T.2    Kan, M.-Y.3    Chen, X.4
  • 10
    • 84904580359 scopus 로고    scopus 로고
    • Predicting the popularity of web 2.0 items based on user comments
    • X. He, M. Gao, M.-Y. Kan, Y. Liu, and K. Sugiyama. Predicting the popularity of web 2.0 items based on user comments. In SIGIR 2014, pages 233-242.
    • SIGIR 2014 , pp. 233-242
    • He, X.1    Gao, M.2    Kan, M.-Y.3    Liu, Y.4    Sugiyama, K.5
  • 11
    • 84904569042 scopus 로고    scopus 로고
    • Comment-based multi-view clustering of web 2.0 items
    • X. He, M.-Y. Kan, P. Xie, and X. Chen. Comment-based multi-view clustering of web 2.0 items. In Proc. of www '14, pages 771-782, 2014.
    • (2014) Proc. of Www '14 , pp. 771-782
    • He, X.1    Kan, M.-Y.2    Xie, P.3    Chen, X.4
  • 12
    • 67049164166 scopus 로고    scopus 로고
    • Collaborative filtering for implicit feedback datasets
    • Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In ICDM 2008, pages 263-272.
    • ICDM 2008 , pp. 263-272
    • Hu, Y.1    Koren, Y.2    Volinsky, C.3
  • 13
    • 84957028575 scopus 로고    scopus 로고
    • Tencentrec: Real-time stream recommendation in practice
    • Y. Huang, B. Cui, W. Zhang, J. Jiang, and Y. Xu. Tencentrec: Real-time stream recommendation in practice. In SIGMOD 2015, pages 227-238.
    • SIGMOD 2015 , pp. 227-238
    • Huang, Y.1    Cui, B.2    Zhang, W.3    Jiang, J.4    Xu, Y.5
  • 14
    • 70350647708 scopus 로고    scopus 로고
    • Collaborative filtering with temporal dynamics
    • Y. Koren. Collaborative filtering with temporal dynamics. In KDD 2009, pages 447-456.
    • KDD 2009 , pp. 447-456
    • Koren, Y.1
  • 15
    • 80052883059 scopus 로고    scopus 로고
    • Advances in collaborative filtering
    • Springer
    • Y. Koren and R. Bell. Advances in collaborative filtering. In Recommender systems handbook, pages 145-186. Springer, 2011.
    • (2011) Recommender Systems Handbook , pp. 145-186
    • Koren, Y.1    Bell, R.2
  • 16
    • 84937861081 scopus 로고    scopus 로고
    • Neural word embedding as implicit matrix factorization
    • O. Levy and Y. Goldberg. Neural word embedding as implicit matrix factorization. In NIPS 2014, pages 2177-2185.
    • NIPS 2014 , pp. 2177-2185
    • Levy, O.1    Goldberg, Y.2
  • 17
    • 84865078183 scopus 로고    scopus 로고
    • Online learning for collaborative filtering
    • G. Ling, H. Yang, I. King, and M. R. Lyu. Online learning for collaborative filtering. In IJCNN 2012, pages 1-8.
    • IJCNN 2012 , pp. 1-8
    • Ling, G.1    Yang, H.2    King, I.3    Lyu, M.R.4
  • 18
    • 58149183811 scopus 로고    scopus 로고
    • Collaborative filtering and the missing at random assumption
    • B. M. Marlin, R. S. Zemel, S. Roweis, and M. Slaney. Collaborative filtering and the missing at random assumption. In UAI 2007, pages 267-276.
    • UAI 2007 , pp. 267-276
    • Marlin, B.M.1    Zemel, R.S.2    Roweis, S.3    Slaney, M.4
  • 19
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In NIPS 2013, pages 3111-3119.
    • NIPS 2013 , pp. 3111-3119
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 20
    • 70350623327 scopus 로고    scopus 로고
    • Mind the gaps: Weighting the unknown in large-scale one-class collaborative filtering
    • R. Pan and M. Scholz. Mind the gaps: Weighting the unknown in large-scale one-class collaborative filtering. In KDD 2009, pages 667-676.
    • KDD 2009 , pp. 667-676
    • Pan, R.1    Scholz, M.2
  • 22
    • 84961289992 scopus 로고    scopus 로고
    • Glove: Global vectors for word representation
    • J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In EMNLP 2014, pages 1532-1543.
    • EMNLP 2014 , pp. 1532-1543
    • Pennington, J.1    Socher, R.2    Manning, C.D.3
  • 23
    • 78649966572 scopus 로고    scopus 로고
    • Fast als-based matrix factorization for explicit and implicit feedback datasets
    • I. Pilászy, D. Zibriczky, and D. Tikk. Fast als-based matrix factorization for explicit and implicit feedback datasets. In RecSys 2010, pages 71-78.
    • RecSys 2010 , pp. 71-78
    • Pilászy, I.1    Zibriczky, D.2    Tikk, D.3
  • 24
    • 84906871528 scopus 로고    scopus 로고
    • Improving pairwise learning for item recommendation from implicit feedback
    • S. Rendle and C. Freudenthaler. Improving pairwise learning for item recommendation from implicit feedback. In WSDM 2014, pages 273-282.
    • WSDM 2014 , pp. 273-282
    • Rendle, S.1    Freudenthaler, C.2
  • 27
    • 63449105336 scopus 로고    scopus 로고
    • Online-updating regularized kernel matrix factorization models for large scale recommender systems
    • S. Rendle and L. Schmidt-Thieme. Online-updating regularized kernel matrix factorization models for large scale recommender systems. In RecSys 2008, pages 251-258.
    • RecSys 2008 , pp. 251-258
    • Rendle, S.1    Schmidt-Thieme, L.2
  • 28
    • 84897116612 scopus 로고    scopus 로고
    • Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function
    • P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function. Math. Prog., 2014.
    • (2014) Math. Prog.
    • Richtárik, P.1    Takáč, M.2
  • 30
    • 77956208065 scopus 로고    scopus 로고
    • Training and testing of recommender systems on data missing not at random
    • H. Steck. Training and testing of recommender systems on data missing not at random. In KDD 2010, pages 713-722.
    • KDD 2010 , pp. 713-722
    • Steck, H.1
  • 31
    • 84953791801 scopus 로고    scopus 로고
    • Effective latent models for binary feedback in recommender systems
    • M. Volkovs and G. W. Yu. Effective latent models for binary feedback in recommender systems. In SIGIR 2015, pages 313-322.
    • SIGIR 2015 , pp. 313-322
    • Volkovs, M.1    Yu, G.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.