메뉴 건너뛰기




Volumn , Issue , 2014, Pages 771-781

Comment-based multi-view clustering of Web 2.0 items

Author keywords

Co regularized NMF; Comment based clustering; CoNMF; Multi view clustering

Indexed keywords

COBALT COMPOUNDS; FACTORIZATION; IMAGE ENHANCEMENT; ITERATIVE METHODS; MATRIX ALGEBRA; SEMANTICS; SULFUR COMPOUNDS;

EID: 84904569042     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2566486.2567975     Document Type: Conference Paper
Times cited : (102)

References (42)
  • 1
    • 84864118833 scopus 로고    scopus 로고
    • Non-negative matrix factorization in multimodality data for segmentation and label prediction
    • Z. Akata, C. Thurau, and C. Bauckhage. Non-negative matrix factorization in multimodality data for segmentation and label prediction. In 16th Computer Vision Winter Workshop, 2011
    • (2011) 16th Computer Vision Winter Workshop
    • Akata, Z.1    Thurau, C.2    Bauckhage, C.3
  • 6
    • 36749071484 scopus 로고    scopus 로고
    • Svd based initialization: A head start for nonnegative matrix factorization
    • C. Boutsidis and E. Gallopoulos. Svd based initialization: A head start for nonnegative matrix factorization. Pattern Recognition, 41(4):1350-1362, 2008.
    • (2008) Pattern Recognition , vol.41 , Issue.4 , pp. 1350-1362
    • Boutsidis, C.1    Gallopoulos, E.2
  • 7
    • 72449145346 scopus 로고    scopus 로고
    • Multiview clustering: A late fusion approach using latent models
    • E. Bruno and S. Marchand-Maillet. Multiview clustering: A late fusion approach using latent models. In Proc. of SIGIR '09, pages 736-737, 2009.
    • (2009) Proc. of SIGIR '09 , pp. 736-737
    • Bruno, E.1    Marchand-Maillet, S.2
  • 10
    • 83055161660 scopus 로고    scopus 로고
    • Simultaneous joint and conditional modeling of documents tagged from two perspectives
    • P. Das, R. Srihari, and Y. Fu. Simultaneous joint and conditional modeling of documents tagged from two perspectives. In Proc. of CIKM '11, pages 1353-1362, 2011.
    • (2011) Proc. of CIKM '11 , pp. 1353-1362
    • Das, P.1    Srihari, R.2    Fu, Y.3
  • 11
    • 0034824884 scopus 로고    scopus 로고
    • Concept decompositions for large sparse text data using clustering
    • I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse text data using clustering. Machine learning, 42(1-2):143-175, 2001.
    • (2001) Machine Learning , vol.42 , Issue.1-2 , pp. 143-175
    • Dhillon, I.S.1    Modha, D.S.2
  • 12
    • 33749575326 scopus 로고    scopus 로고
    • Orthogonal nonnegative matrix tri-factorizations for clustering
    • C. Ding, T. Li, W. Peng, and H. Park. Orthogonal nonnegative matrix tri-factorizations for clustering. In Proc. of KDD '06, pages 126-135, 2006.
    • (2006) Proc. of KDD '06 , pp. 126-135
    • Ding, C.1    Li, T.2    Peng, W.3    Park, H.4
  • 13
    • 33749255098 scopus 로고    scopus 로고
    • On the equivalence of nonnegative matrix factorization and spectral clustering
    • C. H. Ding, X. He, and H. D. Simon. On the equivalence of nonnegative matrix factorization and spectral clustering. In Proc. of SDM '05, pages 606-610, 2005.
    • (2005) Proc. of SDM '05 , pp. 606-610
    • Ding, C.H.1    He, X.2    Simon, H.D.3
  • 14
    • 80052125411 scopus 로고    scopus 로고
    • Improved video categorization from text metadata and user comments
    • K. Filippova and K. B. Hall. Improved video categorization from text metadata and user comments. In Proc. of SIGIR '11, pages 835-842, 2011.
    • (2011) Proc. of SIGIR '11 , pp. 835-842
    • Filippova, K.1    Hall, K.B.2
  • 15
    • 84885621082 scopus 로고    scopus 로고
    • Relation between plsa and nmf and implications
    • E. Gaussier and C. Goutte. Relation between plsa and nmf and implications. In Proc. of SIGIR '05, pages 601-602, 2005.
    • (2005) Proc. of SIGIR '05 , pp. 601-602
    • Gaussier, E.1    Goutte, C.2
  • 16
    • 71049164704 scopus 로고    scopus 로고
    • A matrix factorization approach for integrating multiple data views
    • D. Greene and P. Cunningham. A matrix factorization approach for integrating multiple data views. In Proc. of ECML/PKDD '09, pages 423-438, 2009.
    • (2009) Proc. of ECML/PKDD '09 , pp. 423-438
    • Greene, D.1    Cunningham, P.2
  • 17
    • 78650996718 scopus 로고    scopus 로고
    • Clustering web video search results based on integration of multiple features
    • A. Hindle, J. Shao, D. Lin, J. Lu, and R. Zhang. Clustering web video search results based on integration of multiple features. World Wide Web, 14(1):53-73, 2011.
    • (2011) World Wide Web , vol.14 , Issue.1 , pp. 53-73
    • Hindle, A.1    Shao, J.2    Lin, D.3    Lu, J.4    Zhang, R.5
  • 18
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic latent semantic analysis
    • T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Machine learning, 42(1-2):177-196, 2001.
    • (2001) Machine Learning , vol.42 , Issue.1-2 , pp. 177-196
    • Hofmann, T.1
  • 19
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • P. O. Hoyer. Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research, 5:1457-1469, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 20
    • 79959294095 scopus 로고    scopus 로고
    • Hierarchical comments-based clustering
    • C.-F. Hsu, J. Caverlee, and E. Khabiri. Hierarchical comments-based clustering. In Proc. of SAC '11, pages 1130-1137, 2011.
    • (2011) Proc. of SAC '11 , pp. 1130-1137
    • Hsu, C.-F.1    Caverlee, J.2    Khabiri, E.3
  • 21
    • 57349113043 scopus 로고    scopus 로고
    • Comments-oriented document summarization: Understanding documents with readers' feedback
    • M. Hu, A. Sun, and E.-P. Lim. Comments-oriented document summarization: understanding documents with readers' feedback. In Proc. of SIGIR '08, pages 291-298, 2008.
    • (2008) Proc. of SIGIR '08 , pp. 291-298
    • Hu, M.1    Sun, A.2    Lim, E.-P.3
  • 23
    • 0002719797 scopus 로고
    • The hungarian method for the assignment problem
    • H. W. Kuhn. The hungarian method for the assignment problem. Naval research logistics quarterly, 2(1-2):83-97, 1955.
    • (1955) Naval Research Logistics Quarterly , vol.2 , Issue.1-2 , pp. 83-97
    • Kuhn, H.W.1
  • 24
    • 85162436778 scopus 로고    scopus 로고
    • Co-regularized multi-view spectral clustering
    • A. Kumar, P. Rai, and H. D. Iii. Co-regularized multi-view spectral clustering. In Proc. of NIPS '11, pages 1413-1421, 2011.
    • (2011) Proc. of NIPS '11 , pp. 1413-1421
    • Kumar, A.1    Rai, P.2
  • 25
    • 80155180643 scopus 로고    scopus 로고
    • Slovak blog clustering enhanced by mining the web comments
    • T. Kuzar and P. Navrat. Slovak blog clustering enhanced by mining the web comments. In Proc. of WI-IAT '11, pages 293-296, 2011.
    • (2011) Proc. of WI-IAT '11 , pp. 293-296
    • Kuzar, T.1    Navrat, P.2
  • 27
    • 80052136887 scopus 로고    scopus 로고
    • Mining tags using social endorsement networks
    • T. Lappas, K. Punera, and T. Sarlos. Mining tags using social endorsement networks. In Proc. of SIGIR '11, pages 195-204, 2011.
    • (2011) Proc. of SIGIR '11 , pp. 195-204
    • Lappas, T.1    Punera, K.2    Sarlos, T.3
  • 28
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788-791, 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 29
    • 34248399634 scopus 로고    scopus 로고
    • Enhancing clustering blog documents by utilizing author/reader comments
    • B. Li, S. Xu, and J. Zhang. Enhancing clustering blog documents by utilizing author/reader comments. In Proc. of ACM-SE '07, pages 94-99, 2007.
    • (2007) Proc. of ACM-SE '07 , pp. 94-99
    • Li, B.1    Xu, S.2    Zhang, J.3
  • 30
    • 77954604765 scopus 로고    scopus 로고
    • Distributed nonnegative matrix factorization for web-scale dyadic data analysis on mapreduce
    • C. Liu, H.-c. Yang, J. Fan, L.-W. He, and Y.-M. Wang. Distributed nonnegative matrix factorization for web-scale dyadic data analysis on mapreduce. In Proc. of WWW '10, pages 681-690, 2010.
    • (2010) Proc. of WWW '10 , pp. 681-690
    • Liu, C.1    Yang, H.-C.2    Fan, J.3    He, L.-W.4    Wang, Y.-M.5
  • 32
    • 84886433522 scopus 로고    scopus 로고
    • Multi-view clustering via joint nonnegative matrix factorization
    • J. Liu, C. Wang, J. Gao, and J. Han. Multi-view clustering via joint nonnegative matrix factorization. In Proc. of SDM '13, pages 252-260, 2013.
    • (2013) Proc. of SDM '13 , pp. 252-260
    • Liu, J.1    Wang, C.2    Gao, J.3    Han, J.4
  • 33
    • 52649115862 scopus 로고    scopus 로고
    • A general model for multiple view unsupervised learning
    • B. Long, S. Y. Philip, and Z. M. Zhang. A general model for multiple view unsupervised learning. In Proc. of SDM '08, pages 822-833, 2008.
    • (2008) Proc. of SDM '08 , pp. 822-833
    • Long, B.1    Philip, S.Y.2    Zhang, Z.M.3
  • 38
    • 1542347775 scopus 로고    scopus 로고
    • Recom: Reinforcement clustering of multi-type interrelated data objects
    • J. Wang, H. Zeng, Z. Chen, H. Lu, L. Tao, and W.-Y. Ma. Recom: reinforcement clustering of multi-type interrelated data objects. In Proc. of SIGIR '03, pages 274-281, 2003.
    • (2003) Proc. of SIGIR '03 , pp. 274-281
    • Wang, J.1    Zeng, H.2    Chen, Z.3    Lu, H.4    Tao, L.5    Ma, W.-Y.6
  • 39
    • 84897584251 scopus 로고    scopus 로고
    • Nonnegative matrix factorization: A comprehensive review. Knowledge and Data Engineering
    • Y.-X. Wang and Y.-J. Zhang. Nonnegative matrix factorization: A comprehensive review. Knowledge and Data Engineering, IEEE Transactions on, 25(6):1336-1353, 2013.
    • (2013) IEEE Transactions on , vol.25 , Issue.6 , pp. 1336-1353
    • Wang, Y.-X.1    Zhang, Y.-J.2
  • 40
    • 1542347778 scopus 로고    scopus 로고
    • Document clustering based on non-negative matrix factorization
    • W. Xu, X. Liu, and Y. Gong. Document clustering based on non-negative matrix factorization. In Proc. of SIGIR '03, pages 267-273, 2003.
    • (2003) Proc. of SIGIR '03 , pp. 267-273
    • Xu, W.1    Liu, X.2    Gong, Y.3
  • 42
    • 84859471448 scopus 로고    scopus 로고
    • Nimfa: A python library for nonnegative matrix factorization
    • M. Zitnik and B. Zupan. Nimfa: A python library for nonnegative matrix factorization. Journal of Machine Learning Research, 13:849-853, 2012.
    • (2012) Journal of Machine Learning Research , vol.13 , pp. 849-853
    • Zitnik, M.1    Zupan, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.