-
1
-
-
57349151435
-
Video suggestion and discovery for youtube: Taking random walks through the view graph
-
S. Baluja, R. Seth, and D. Sivakumar. Video suggestion and discovery for Youtube: Taking random walks through the view graph. In Proc. of WWW '08, pages 895-904, 2008.
-
(2008)
Proc. of WWW '08
, pp. 895-904
-
-
Baluja, S.1
Seth, R.2
Sivakumar, D.3
-
3
-
-
78649914423
-
Performance of recommender algorithms on top-n recommendation tasks
-
P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender algorithms on top-n recommendation tasks. In Proc. of RecSys '10, pages 39-46, 2010.
-
(2010)
Proc. of RecSys '10
, pp. 39-46
-
-
Cremonesi, P.1
Koren, Y.2
Turrin, R.3
-
4
-
-
84907027192
-
Jointly modeling aspects, ratings and sentiments for movie recommendation (jmars)
-
Q. Diao, M. Qiu, C.-Y. Wu, A. J. Smola, J. Jiang, and C. Wang. Jointly modeling aspects, ratings and sentiments for movie recommendation (jmars). In Proc. of KDD '14, pages 193-202, 2014.
-
(2014)
Proc. of KDD '14
, pp. 193-202
-
-
Diao, Q.1
Qiu, M.2
Wu, C.-Y.3
Smola, A.J.4
Jiang, J.5
Wang, C.6
-
5
-
-
79957953803
-
Beyond the stars: Improving rating predictions using review text content
-
G. Ganu, N. Elhadad, and A. Marian. Beyond the stars: Improving rating predictions using review text content. In Proc. of WebDB '09, 2009.
-
(2009)
Proc. of WebDB '09
-
-
Ganu, G.1
Elhadad, N.2
Marian, A.3
-
6
-
-
84880877231
-
Itemrank: A random-walk based scoring algorithm for recommender engines
-
M. Gori and A. Pucci. Itemrank: A random-walk based scoring algorithm for recommender engines. In Proc. of IJCAI '07, pages 2766-2771, 2007.
-
(2007)
Proc. of IJCAI '07
, pp. 2766-2771
-
-
Gori, M.1
Pucci, A.2
-
7
-
-
84893067066
-
Wtf: The who to follow service at twitter
-
P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, and R. Zadeh. Wtf: The who to follow service at twitter. In Proc. of WWW '13, pages 505-514, 2013.
-
(2013)
Proc. of WWW '13
, pp. 505-514
-
-
Gupta, P.1
Goel, A.2
Lin, J.3
Sharma, A.4
Wang, D.5
Zadeh, R.6
-
8
-
-
77953061730
-
Topic-sensitive PageRank
-
T. H. Haveliwala. Topic-sensitive PageRank. In Proc. of WWW '02, pages 517-526, 2002.
-
(2002)
Proc. of WWW '02
, pp. 517-526
-
-
Haveliwala, T.H.1
-
9
-
-
84904580359
-
Predicting the popularity of web 2.0 items based on user comments
-
X. He, M. Gao, M.-Y. Kan, Y. Liu, and K. Sugiyama. Predicting the popularity of web 2.0 items based on user comments. In Proc. SIGIR '14, pages 233-242, 2014.
-
(2014)
Proc. SIGIR '14
, pp. 233-242
-
-
He, X.1
Gao, M.2
Kan, M.-Y.3
Liu, Y.4
Sugiyama, K.5
-
10
-
-
84904569042
-
Comment-based multi-view clustering of web 2.0 items
-
X. He, M.-Y. Kan, P. Xie, and X. Chen. Comment-based multi-view clustering of web 2.0 items. In Proc. of WWW '14, pages 771-782, 2014.
-
(2014)
Proc. of WWW '14
, pp. 771-782
-
-
He, X.1
Kan, M.-Y.2
Xie, P.3
Chen, X.4
-
11
-
-
84904559853
-
Your neighbors affect your ratings: On geographical neighborhood influence to rating prediction
-
L. Hu, A. Sun, and Y. Liu. Your neighbors affect your ratings: On geographical neighborhood influence to rating prediction. In Proc. of SIGIR '14, pages 345-354, 2014.
-
(2014)
Proc. of SIGIR '14
, pp. 345-354
-
-
Hu, L.1
Sun, A.2
Liu, Y.3
-
12
-
-
12244305149
-
Mining and summarizing customer reviews
-
M. Hu and B. Liu. Mining and summarizing customer reviews. In Proc. of KDD '04, pages 168-177, 2004.
-
(2004)
Proc. of KDD '04
, pp. 168-177
-
-
Hu, M.1
Liu, B.2
-
13
-
-
71149114015
-
A novel lexicalized hmm-based learning framework for web opinion mining
-
W. Jin and H. H. Ho. A novel lexicalized hmm-based learning framework for web opinion mining. In Proc. of ICML '09, pages 465-472, 2009.
-
(2009)
Proc. of ICML '09
, pp. 465-472
-
-
Jin, W.1
Ho, H.H.2
-
14
-
-
80052883059
-
Advances in collaborative filtering
-
Springer US
-
Y. Koren and R. Bell. Advances in collaborative filtering. In Recommender Systems Handbook, pages 145-186. Springer US, 2011.
-
(2011)
Recommender Systems Handbook
, pp. 145-186
-
-
Koren, Y.1
Bell, R.2
-
15
-
-
82555195666
-
Random walk based entity ranking on graph for multidimensional recommendation
-
S. Lee, S.-i. Song, M. Kahng, D. Lee, and S.-g. Lee. Random walk based entity ranking on graph for multidimensional recommendation. In Proc. of RecSys '11, pages 93-100, 2011.
-
(2011)
Proc. of RecSys '11
, pp. 93-100
-
-
Lee, S.1
Song, S.-I.2
Kahng, M.3
Lee, D.4
Lee, S.-G.5
-
16
-
-
0037252945
-
Amazon.com recommendations: Item-to-item collaborative filtering
-
IEEE Jan
-
G. Linden, B. Smith, and J. York. Amazon.com recommendations: item-to-item collaborative filtering. Internet Computing, IEEE, 7(1):76-80, Jan 2003.
-
(2003)
Internet Computing
, vol.7
, Issue.1
, pp. 76-80
-
-
Linden, G.1
Smith, B.2
York, J.3
-
17
-
-
84908884026
-
Ratings meet reviews, a combined approach to recommend
-
G. Ling, M. R. Lyu, and I. King. Ratings meet reviews, a combined approach to recommend. In Proc. of RecSys '14, pages 105-112, 2014.
-
(2014)
Proc. of RecSys '14
, pp. 105-112
-
-
Ling, G.1
Lyu, M.R.2
King, I.3
-
18
-
-
57349097660
-
Eigenrank: A ranking-oriented approach to collaborative filtering
-
N. N. Liu and Q. Yang. Eigenrank: A ranking-oriented approach to collaborative filtering. In Proc. of SIGIR '08, pages 83-90, 2008.
-
(2008)
Proc. of SIGIR '08
, pp. 83-90
-
-
Liu, N.N.1
Yang, Q.2
-
19
-
-
84887587513
-
Hidden factors and hidden topics: Understanding rating dimensions with review text
-
J. McAuley and J. Leskovec. Hidden factors and hidden topics: Understanding rating dimensions with review text. In Proc. of RecSys'13, pages 165-172, 2013.
-
(2013)
Proc. of RecSys'13
, pp. 165-172
-
-
McAuley, J.1
Leskovec, J.2
-
21
-
-
84883115169
-
Sentiment analysis of user comments for one-class collaborative filtering over ted talks
-
N. Pappas and A. Popescu-Belis. Sentiment analysis of user comments for one-class collaborative filtering over ted talks. In Proc. of SIGIR '13, pages 773-776, 2013.
-
(2013)
Proc. of SIGIR '13
, pp. 773-776
-
-
Pappas, N.1
Popescu-Belis, A.2
-
22
-
-
84884477955
-
Opinion-driven matrix factorization for rating prediction
-
Š. Pero and T. Horváth. Opinion-driven matrix factorization for rating prediction. In Proc. of UMAP '13, pages 1-13. 2013.
-
(2013)
Proc. of UMAP '13
, pp. 1-13
-
-
Pero, S.1
Horváth, T.2
-
23
-
-
78650134987
-
Bpr: Bayesian personalized ranking from implicit feedback
-
S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt. Bpr: Bayesian personalized ranking from implicit feedback. In Proc. of UAI '09, pages 452-461, 2009.
-
(2009)
Proc. of UAI '09
, pp. 452-461
-
-
Rendle, S.1
Freudenthaler, C.2
Gantner, Z.3
Schmidt, L.4
-
24
-
-
85052617391
-
Item-based collaborative filtering recommendation algorithms
-
B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. In Proc. of WWW '01, pages 285-295, 2001.
-
(2001)
Proc. of WWW '01
, pp. 285-295
-
-
Sarwar, B.1
Karypis, G.2
Konstan, J.3
Riedl, J.4
-
26
-
-
84927539312
-
Text-based user-knn: Measuring user similarity based on text reviews
-
M. Terzi, M. Rowe, M.-A. Ferrario, and J. Whittle. Text-based user-knn: Measuring user similarity based on text reviews. In Proc. of UMAP '14, pages 195-206. 2014.
-
(2014)
Proc. of UMAP '14
, pp. 195-206
-
-
Terzi, M.1
Rowe, M.2
Ferrario, M.-A.3
Whittle, J.4
-
27
-
-
79960495877
-
Designing and evaluating explanations for recommender systems
-
Springer US
-
N. Tintarev and J. Masthoff. Designing and evaluating explanations for recommender systems. In Recommender Systems Handbook, pages 479-510. Springer US, 2011.
-
(2011)
Recommender Systems Handbook
, pp. 479-510
-
-
Tintarev, N.1
Masthoff, J.2
-
28
-
-
72249096877
-
Tagsplanations: Explaining recommendations using tags
-
J. Vig, S. Sen, and J. Riedl. Tagsplanations: Explaining recommendations using tags. In Proc. of IUI '09, pages 47-56, 2009.
-
(2009)
Proc. of IUI '09
, pp. 47-56
-
-
Vig, J.1
Sen, S.2
Riedl, J.3
-
29
-
-
77956220287
-
Temporal recommendation on graphs via longand short-term preference fusion
-
L. Xiang, Q. Yuan, S. Zhao, L. Chen, X. Zhang, Q. Yang, and J. Sun. Temporal recommendation on graphs via longand short-term preference fusion. In Proc. of KDD '10, pages 723-732, 2010.
-
(2010)
Proc. of KDD '10
, pp. 723-732
-
-
Xiang, L.1
Yuan, Q.2
Zhao, S.3
Chen, L.4
Zhang, X.5
Yang, Q.6
Sun, J.7
-
30
-
-
84937563514
-
Collaborative filtering incorporating review text and co-clusters of hidden user communities and item groups
-
Y. Xu, W. Lam, and T. Lin. Collaborative filtering incorporating review text and co-clusters of hidden user communities and item groups. In Proc. of CIKM '14, pages 251-260, 2014.
-
(2014)
Proc. of CIKM '14
, pp. 251-260
-
-
Xu, Y.1
Lam, W.2
Lin, T.3
-
32
-
-
79955704875
-
Extracting and ranking product features in opinion documents
-
L. Zhang, B. Liu, S. H. Lim, and E. O'Brien. Extracting and ranking product features in opinion documents. In Proc. of COLING '10, pages 1462-1470, 2010.
-
(2010)
Proc. of COLING '10
, pp. 1462-1470
-
-
Zhang, L.1
Liu, B.2
Lim, S.H.3
O'Brien, E.4
-
33
-
-
84904573681
-
Do users rate or review?: Boost phrase-level sentiment labeling with review-level sentiment classification
-
Y. Zhang, H. Zhang, M. Zhang, Y. Liu, and S. Ma. Do users rate or review?: Boost phrase-level sentiment labeling with review-level sentiment classification. In Proc. of SIGIR '14, pages 1027-1030, 2014.
-
(2014)
Proc. of SIGIR '14
, pp. 1027-1030
-
-
Zhang, Y.1
Zhang, H.2
Zhang, M.3
Liu, Y.4
Ma, S.5
-
34
-
-
84904544672
-
Explicit factor models for explainable recommendation based on phrase-level sentiment analysis
-
Y. Zhang, M. Zhang, Y. Zhang, Y. Liu, and S. Ma. Explicit factor models for explainable recommendation based on phrase-level sentiment analysis. In Proc. of SIGIR '14, pages 83-92, 2014.
-
(2014)
Proc. of SIGIR '14
, pp. 83-92
-
-
Zhang, Y.1
Zhang, M.2
Zhang, Y.3
Liu, Y.4
Ma, S.5
-
35
-
-
84885626865
-
A random walk model for item recommendation in social tagging systems
-
Z. Zhang, D. D. Zeng, A. Abbasi, J. Peng, and X. Zheng. A random walk model for item recommendation in social tagging systems. ACM Transactions on Management Information Systems, 4(2):1-24, 2013.
-
(2013)
ACM Transactions on Management Information Systems
, vol.4
, Issue.2
, pp. 1-24
-
-
Zhang, Z.1
Zeng, D.D.2
Abbasi, A.3
Peng, J.4
Zheng, X.5
-
36
-
-
84899006908
-
Learning with local and global consistency
-
D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with local and global consistency. In NIPS, pages 321-328, 2004.
-
(2004)
NIPS
, pp. 321-328
-
-
Zhou, D.1
Bousquet, O.2
Lal, T.N.3
Weston, J.4
Schölkopf, B.5
|