-
1
-
-
20844435854
-
Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
-
G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. TKDE, 2005.
-
(2005)
TKDE
-
-
Adomavicius, G.1
Tuzhilin, A.2
-
2
-
-
77956208406
-
Fast online learning through offline initialization for time-sensitive recommendation
-
D. Agarwal, B.-C. Chen, and P. Elango. Fast online learning through offline initialization for time-sensitive recommendation. In KDD, 2010.
-
(2010)
KDD
-
-
Agarwal, D.1
Chen, B.-C.2
Elango, P.3
-
6
-
-
35348914807
-
Google news personalization: Scalable online collaborative filtering
-
A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization: scalable online collaborative filtering. In WWW, 2007.
-
(2007)
WWW
-
-
Das, A.S.1
Datar, M.2
Garg, A.3
Rajaram, S.4
-
7
-
-
15044355327
-
Similarity search in high dimensions via hashing
-
A. Gionis, P. Indyk, R. Motwani, et al. Similarity search in high dimensions via hashing. In VLDB, 1999.
-
(1999)
VLDB
-
-
Gionis, A.1
Indyk, P.2
Motwani, R.3
-
9
-
-
84887601251
-
Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval
-
Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval. TPAMI, 2013.
-
(2013)
TPAMI
-
-
Gong, Y.1
Lazebnik, S.2
Gordo, A.3
Perronnin, F.4
-
10
-
-
1942484979
-
Online ranking/collaborative filtering using the perceptron algorithm
-
E. F. Harrington. Online ranking/collaborative filtering using the perceptron algorithm. In ICML, 2003.
-
(2003)
ICML
-
-
Harrington, E.F.1
-
11
-
-
0000844603
-
Some optimal inapproximability results
-
J. Håstad. Some optimal inapproximability results. JACM, 2001.
-
(2001)
JACM
-
-
Håstad, J.1
-
12
-
-
84959275581
-
Trirank: Review-aware explainable recommendation by modeling aspects
-
X. He, T. Chen, M.-Y. Kan, and X. Chen. Trirank: Review-aware explainable recommendation by modeling aspects. In CIKM, 2015.
-
(2015)
CIKM
-
-
He, X.1
Chen, T.2
Kan, M.-Y.3
Chen, X.4
-
13
-
-
84980329382
-
Fast matrix factorization for online recommendation with implicit feedback
-
X. H. He, H. Zhang, M.-Y. Kan, and T.-S. Chua. Fast matrix factorization for online recommendation with implicit feedback. In SIGIR, 2016.
-
(2016)
SIGIR
-
-
He, X.H.1
Zhang, H.2
Kan, M.-Y.3
Chua, T.-S.4
-
15
-
-
70350647708
-
Collaborative filtering with temporal dynamics
-
Y. Koren. Collaborative filtering with temporal dynamics. In KDD, 2009.
-
(2009)
KDD
-
-
Koren, Y.1
-
16
-
-
85008044987
-
Matrix factorization techniques for recommender systems
-
Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 2009.
-
(2009)
Computer
-
-
Koren, Y.1
Bell, R.2
Volinsky, C.3
-
19
-
-
80355130576
-
Recommender systems with social regularization
-
H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King. Recommender systems with social regularization. In WSDM, 2011.
-
(2011)
WSDM
-
-
Ma, H.1
Zhou, D.2
Liu, C.3
Lyu, M.R.4
King, I.5
-
20
-
-
76749107542
-
Online learning for matrix factorization and sparse coding
-
J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. JMLR, 2010.
-
(2010)
JMLR
-
-
Mairal, J.1
Bach, F.2
Ponce, J.3
Sapiro, G.4
-
21
-
-
84887587513
-
Hidden factors and hidden topics: Understanding rating dimensions with review text
-
J. McAuley and J. Leskovec. Hidden factors and hidden topics: Understanding rating dimensions with review text. In RecSys, 2013.
-
(2013)
RecSys
-
-
McAuley, J.1
Leskovec, J.2
-
22
-
-
84866714589
-
Fast search in hamming space with multi-index hashing
-
M. Norouzi, A. Punjani, and D. J. Fleet. Fast search in hamming space with multi-index hashing. In CVPR, 2012.
-
(2012)
CVPR
-
-
Norouzi, M.1
Punjani, A.2
Fleet, D.J.3
-
23
-
-
84881117508
-
Scaling factorization Machines to relational data
-
S. Rendle. Scaling factorization machines to relational data. VLDB, 2013.
-
(2013)
VLDB
-
-
Rendle, S.1
-
25
-
-
85052617391
-
Item-based collaborative filtering recommendation algorithms
-
B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. In WWW, 2001.
-
(2001)
WWW
-
-
Sarwar, B.1
Karypis, G.2
Konstan, J.3
Riedl, J.4
-
27
-
-
84953791801
-
Effective latent models for binary feedback in recommender systems
-
M. Volkovs and G. W. Yu. Effective latent models for binary feedback in recommender systems. In SIGIR, 2015.
-
(2015)
SIGIR
-
-
Volkovs, M.1
Yu, G.W.2
-
28
-
-
84865410773
-
Semi-supervised hashing for large-scale search
-
J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hashing for large-scale search. TPAMI, 2012.
-
(2012)
TPAMI
-
-
Wang, J.1
Kumar, S.2
Chang, S.-F.3
-
30
-
-
48349104603
-
Maximum margin matrix factorization for collaborative ranking
-
M. Weimer, A. Karatzoglou, Q. V. Le, and A. Smola. Maximum margin matrix factorization for collaborative ranking. NIPS, 2007.
-
(2007)
NIPS
-
-
Weimer, M.1
Karatzoglou, A.2
Le, Q.V.3
Smola, A.4
-
32
-
-
84904537591
-
Preference preserving hashing for efficient recommendation
-
Z. Zhang, Q. Wang, L. Ruan, and L. Si. Preference preserving hashing for efficient recommendation. In SIGIR, 2014.
-
(2014)
SIGIR
-
-
Zhang, Z.1
Wang, Q.2
Ruan, L.3
Si, L.4
-
33
-
-
84866013626
-
Learning binary codes for collaborative filtering
-
K. Zhou and H. Zha. Learning binary codes for collaborative filtering. In KDD, 2012.
-
(2012)
KDD
-
-
Zhou, K.1
Zha, H.2
-
34
-
-
70350675904
-
Large-scale parallel collaborative filtering for the netflix prize
-
Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel collaborative filtering for the netflix prize. In AAIM, 2008.
-
(2008)
AAIM
-
-
Zhou, Y.1
Wilkinson, D.2
Schreiber, R.3
Pan, R.4
|