메뉴 건너뛰기




Volumn , Issue , 2016, Pages 325-334

Discrete collaborative filtering

Author keywords

Collaborative Filtering; Discrete hashing; Recommendation

Indexed keywords

ALGORITHMS; BINARY CODES; BINS; CODES (SYMBOLS); INFORMATION RETRIEVAL; OPTIMIZATION; VECTOR SPACES;

EID: 84980322368     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2911451.2911502     Document Type: Conference Paper
Times cited : (315)

References (34)
  • 1
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
    • G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. TKDE, 2005.
    • (2005) TKDE
    • Adomavicius, G.1    Tuzhilin, A.2
  • 2
    • 77956208406 scopus 로고    scopus 로고
    • Fast online learning through offline initialization for time-sensitive recommendation
    • D. Agarwal, B.-C. Chen, and P. Elango. Fast online learning through offline initialization for time-sensitive recommendation. In KDD, 2010.
    • (2010) KDD
    • Agarwal, D.1    Chen, B.-C.2    Elango, P.3
  • 6
    • 35348914807 scopus 로고    scopus 로고
    • Google news personalization: Scalable online collaborative filtering
    • A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization: scalable online collaborative filtering. In WWW, 2007.
    • (2007) WWW
    • Das, A.S.1    Datar, M.2    Garg, A.3    Rajaram, S.4
  • 7
    • 15044355327 scopus 로고    scopus 로고
    • Similarity search in high dimensions via hashing
    • A. Gionis, P. Indyk, R. Motwani, et al. Similarity search in high dimensions via hashing. In VLDB, 1999.
    • (1999) VLDB
    • Gionis, A.1    Indyk, P.2    Motwani, R.3
  • 9
    • 84887601251 scopus 로고    scopus 로고
    • Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval
    • Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval. TPAMI, 2013.
    • (2013) TPAMI
    • Gong, Y.1    Lazebnik, S.2    Gordo, A.3    Perronnin, F.4
  • 10
    • 1942484979 scopus 로고    scopus 로고
    • Online ranking/collaborative filtering using the perceptron algorithm
    • E. F. Harrington. Online ranking/collaborative filtering using the perceptron algorithm. In ICML, 2003.
    • (2003) ICML
    • Harrington, E.F.1
  • 11
    • 0000844603 scopus 로고    scopus 로고
    • Some optimal inapproximability results
    • J. Håstad. Some optimal inapproximability results. JACM, 2001.
    • (2001) JACM
    • Håstad, J.1
  • 12
    • 84959275581 scopus 로고    scopus 로고
    • Trirank: Review-aware explainable recommendation by modeling aspects
    • X. He, T. Chen, M.-Y. Kan, and X. Chen. Trirank: Review-aware explainable recommendation by modeling aspects. In CIKM, 2015.
    • (2015) CIKM
    • He, X.1    Chen, T.2    Kan, M.-Y.3    Chen, X.4
  • 13
    • 84980329382 scopus 로고    scopus 로고
    • Fast matrix factorization for online recommendation with implicit feedback
    • X. H. He, H. Zhang, M.-Y. Kan, and T.-S. Chua. Fast matrix factorization for online recommendation with implicit feedback. In SIGIR, 2016.
    • (2016) SIGIR
    • He, X.H.1    Zhang, H.2    Kan, M.-Y.3    Chua, T.-S.4
  • 15
    • 70350647708 scopus 로고    scopus 로고
    • Collaborative filtering with temporal dynamics
    • Y. Koren. Collaborative filtering with temporal dynamics. In KDD, 2009.
    • (2009) KDD
    • Koren, Y.1
  • 16
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 2009.
    • (2009) Computer
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 19
    • 80355130576 scopus 로고    scopus 로고
    • Recommender systems with social regularization
    • H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King. Recommender systems with social regularization. In WSDM, 2011.
    • (2011) WSDM
    • Ma, H.1    Zhou, D.2    Liu, C.3    Lyu, M.R.4    King, I.5
  • 20
    • 76749107542 scopus 로고    scopus 로고
    • Online learning for matrix factorization and sparse coding
    • J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. JMLR, 2010.
    • (2010) JMLR
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 21
    • 84887587513 scopus 로고    scopus 로고
    • Hidden factors and hidden topics: Understanding rating dimensions with review text
    • J. McAuley and J. Leskovec. Hidden factors and hidden topics: Understanding rating dimensions with review text. In RecSys, 2013.
    • (2013) RecSys
    • McAuley, J.1    Leskovec, J.2
  • 22
    • 84866714589 scopus 로고    scopus 로고
    • Fast search in hamming space with multi-index hashing
    • M. Norouzi, A. Punjani, and D. J. Fleet. Fast search in hamming space with multi-index hashing. In CVPR, 2012.
    • (2012) CVPR
    • Norouzi, M.1    Punjani, A.2    Fleet, D.J.3
  • 23
    • 84881117508 scopus 로고    scopus 로고
    • Scaling factorization Machines to relational data
    • S. Rendle. Scaling factorization machines to relational data. VLDB, 2013.
    • (2013) VLDB
    • Rendle, S.1
  • 25
    • 85052617391 scopus 로고    scopus 로고
    • Item-based collaborative filtering recommendation algorithms
    • B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. In WWW, 2001.
    • (2001) WWW
    • Sarwar, B.1    Karypis, G.2    Konstan, J.3    Riedl, J.4
  • 27
    • 84953791801 scopus 로고    scopus 로고
    • Effective latent models for binary feedback in recommender systems
    • M. Volkovs and G. W. Yu. Effective latent models for binary feedback in recommender systems. In SIGIR, 2015.
    • (2015) SIGIR
    • Volkovs, M.1    Yu, G.W.2
  • 28
    • 84865410773 scopus 로고    scopus 로고
    • Semi-supervised hashing for large-scale search
    • J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hashing for large-scale search. TPAMI, 2012.
    • (2012) TPAMI
    • Wang, J.1    Kumar, S.2    Chang, S.-F.3
  • 30
    • 48349104603 scopus 로고    scopus 로고
    • Maximum margin matrix factorization for collaborative ranking
    • M. Weimer, A. Karatzoglou, Q. V. Le, and A. Smola. Maximum margin matrix factorization for collaborative ranking. NIPS, 2007.
    • (2007) NIPS
    • Weimer, M.1    Karatzoglou, A.2    Le, Q.V.3    Smola, A.4
  • 32
    • 84904537591 scopus 로고    scopus 로고
    • Preference preserving hashing for efficient recommendation
    • Z. Zhang, Q. Wang, L. Ruan, and L. Si. Preference preserving hashing for efficient recommendation. In SIGIR, 2014.
    • (2014) SIGIR
    • Zhang, Z.1    Wang, Q.2    Ruan, L.3    Si, L.4
  • 33
    • 84866013626 scopus 로고    scopus 로고
    • Learning binary codes for collaborative filtering
    • K. Zhou and H. Zha. Learning binary codes for collaborative filtering. In KDD, 2012.
    • (2012) KDD
    • Zhou, K.1    Zha, H.2
  • 34
    • 70350675904 scopus 로고    scopus 로고
    • Large-scale parallel collaborative filtering for the netflix prize
    • Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel collaborative filtering for the netflix prize. In AAIM, 2008.
    • (2008) AAIM
    • Zhou, Y.1    Wilkinson, D.2    Schreiber, R.3    Pan, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.