메뉴 건너뛰기




Volumn 2015-August, Issue , 2015, Pages 189-198

Dynamic matrix factorization with priors on unknown values

Author keywords

Collaborative filtering; Dynamic matrix factorization; Recommender systems

Indexed keywords

COLLABORATIVE FILTERING; DATA MINING; FACTORIZATION; RECOMMENDER SYSTEMS;

EID: 84954158205     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2783258.2783346     Document Type: Conference Paper
Times cited : (112)

References (29)
  • 3
    • 84925237532 scopus 로고    scopus 로고
    • A fast parallel stochastic gradient method for matrix factorization in shared memory systems
    • W.-S. Chin, Y. Zhuang, Y.-C. Juan, and C.-J. Lin. A fast parallel stochastic gradient method for matrix factorization in shared memory systems. ACM TIST, 6(1):2, 2015.
    • (2015) ACM TIST , vol.6 , Issue.1 , pp. 2
    • Chin, W.-S.1    Zhuang, Y.2    Juan, Y.-C.3    Lin, C.-J.4
  • 4
    • 78649914423 scopus 로고    scopus 로고
    • Performance of recommender algorithms on top-n recommendation tasks
    • P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender algorithms on top-n recommendation tasks. In Proc. of the 4th ACM RecSys, pages 39-46, 2010.
    • (2010) Proc. of the 4th ACM RecSys , pp. 39-46
    • Cremonesi, P.1    Koren, Y.2    Turrin, R.3
  • 6
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. The Journal of Machine Learning Research, 12:2121-2159, 2011.
    • (2011) The Journal of Machine Learning Research , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 7
    • 84925433214 scopus 로고    scopus 로고
    • Time-sensitive collaborative filtering through adaptive matrix completion
    • Springer
    • J. Gaillard and J.-M. Renders. Time-sensitive collaborative filtering through adaptive matrix completion. In Advances in Information Retrieval, pages 327-332. Springer, 2015.
    • (2015) Advances in Information Retrieval , pp. 327-332
    • Gaillard, J.1    Renders, J.-M.2
  • 8
    • 80052668032 scopus 로고    scopus 로고
    • Large-scale matrix factorization with distributed stochastic gradient descent
    • R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-scale matrix factorization with distributed stochastic gradient descent. In Proc. of the 17th ACM SIGKDD, pages 69-77, 2011.
    • (2011) Proc. of the 17th ACM SIGKDD , pp. 69-77
    • Gemulla, R.1    Nijkamp, E.2    Haas, P.J.3    Sismanis, Y.4
  • 9
    • 84976668719 scopus 로고
    • Using collaborative filtering to weave an information tapestry
    • D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12):61-70, 1992.
    • (1992) Communications of the ACM , vol.35 , Issue.12 , pp. 61-70
    • Goldberg, D.1    Nichols, D.2    Oki, B.M.3    Terry, D.4
  • 10
    • 67049164166 scopus 로고    scopus 로고
    • Collaborative filtering for implicit feedback datasets
    • Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In Proc. of the 8th IEEE ICDM, pages 263-272, 2008.
    • (2008) Proc. of the 8th IEEE ICDM , pp. 263-272
    • Hu, Y.1    Koren, Y.2    Volinsky, C.3
  • 11
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 42(8):30-37, 2009.
    • (2009) Computer , vol.42 , Issue.8 , pp. 30-37
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 12
    • 85042632297 scopus 로고    scopus 로고
    • GraphChi: Large-scale graph computation on just a pc
    • A. Kyrola, G. E. Blelloch, and C. Guestrin. GraphChi: Large-scale graph computation on just a pc. In OSDI, Volume 12, pages 31-46, 2012.
    • (2012) OSDI , vol.12 , pp. 31-46
    • Kyrola, A.1    Blelloch, G.E.2    Guestrin, C.3
  • 15
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for nonnegative matrix factorization
    • C.-J. Lin. Projected gradient methods for nonnegative matrix factorization. Neural computation, 19(10):2756-2779, 2007.
    • (2007) Neural Computation , vol.19 , Issue.10 , pp. 2756-2779
    • Lin, C.-J.1
  • 18
    • 84887587513 scopus 로고    scopus 로고
    • Hidden factors and hidden topics: Understanding rating dimensions with review text
    • J. McAuley and J. Leskovec. Hidden factors and hidden topics: understanding rating dimensions with review text. In Proc. of the 7th ACM RecSys, pages 165-172, 2013.
    • (2013) Proc. of the 7th ACM RecSys , pp. 165-172
    • McAuley, J.1    Leskovec, J.2
  • 19
    • 70350623327 scopus 로고    scopus 로고
    • Mind the gaps: Weighting the unknown in large-scale one-class collaborative filtering
    • R. Pan and M. Scholz. Mind the gaps: weighting the unknown in large-scale one-class collaborative filtering. In Proc. of the 15th ACM SIGKDD, pages 667-676, 2009.
    • (2009) Proc. of the 15th ACM SIGKDD , pp. 667-676
    • Pan, R.1    Scholz, M.2
  • 21
    • 79951760087 scopus 로고    scopus 로고
    • Factorization machines
    • S. Rendle. Factorization machines. In Proc. of ICDM 2010, pages 995-1000, 2010.
    • (2010) Proc. of ICDM 2010 , pp. 995-1000
    • Rendle, S.1
  • 23
    • 63449105336 scopus 로고    scopus 로고
    • Online-updating regularized kernel matrix factorization models for large-scale recommender systems
    • S. Rendle and L. Schmidt-Thieme. Online-updating regularized kernel matrix factorization models for large-scale recommender systems. In Proc. of the ACM Rec-Sys, pages 251-258, 2008.
    • (2008) Proc. of the ACM Rec-Sys , pp. 251-258
    • Rendle, S.1    Schmidt-Thieme, L.2
  • 24
    • 85030174634 scopus 로고
    • Grouplens: An open architecture for collaborative filtering of netnews
    • P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: an open architecture for collaborative filtering of netnews. In Proc. of ACM CSCW, pages 175-186, 1994.
    • (1994) Proc. of ACM CSCW , pp. 175-186
    • Resnick, P.1    Iacovou, N.2    Suchak, M.3    Bergstrom, P.4    Riedl, J.5
  • 25
    • 84897116612 scopus 로고    scopus 로고
    • Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function
    • P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function. Mathematical Programming, 144(1-2):1-38, 2014.
    • (2014) Mathematical Programming , vol.144 , Issue.1-2 , pp. 1-38
    • Richtárik, P.1    Takáč, M.2
  • 27
    • 77956208065 scopus 로고    scopus 로고
    • Training and testing of recommender systems on data missing not at random
    • H. Steck. Training and testing of recommender systems on data missing not at random. In Proc. of the 16th ACM SIGKDD, pages 713-722, 2010.
    • (2010) Proc. of the 16th ACM SIGKDD , pp. 713-722
    • Steck, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.