메뉴 건너뛰기




Volumn , Issue , 2015, Pages 313-322

Effective latent models for binary feedback in recommender systems

Author keywords

Binary feedback; Collaborative filtering; Latent models

Indexed keywords

BINS; FACTORIZATION; FEEDBACK; INFORMATION RETRIEVAL; RECOMMENDER SYSTEMS;

EID: 84953791801     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2766462.2767716     Document Type: Conference Paper
Times cited : (64)

References (25)
  • 2
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
    • G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 2005.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.6
    • Adomavicius, G.1    Tuzhilin, A.2
  • 3
    • 84887580616 scopus 로고    scopus 로고
    • Efficient top-n recommendation for very large scale binary rated datasets
    • F. Aiolli. Efficient top-n recommendation for very large scale binary rated datasets. In ACM Recommender Systems, 2013.
    • (2013) ACM Recommender Systems
    • Aiolli, F.1
  • 7
    • 33645149161 scopus 로고    scopus 로고
    • Fast low-rank modifications of the thin singular value decomposition
    • M. Brand. Fast low-rank modifications of the thin singular value decomposition. Linear algebra and its applications, 415(1), 2006.
    • (2006) Linear Algebra and its Applications , vol.415 , Issue.1
    • Brand, M.1
  • 11
    • 79960425522 scopus 로고    scopus 로고
    • Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions
    • N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2), 2011.
    • (2011) SIAM Review , vol.53 , Issue.2
    • Halko, N.1    Martinsson, P.G.2    Tropp, J.A.3
  • 12
    • 3042829247 scopus 로고    scopus 로고
    • An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms
    • J. Herlocker, J. A. Konstan, and J. Riedl. An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms. Information Retrieval, 5(4), 2002.
    • (2002) Information Retrieval , vol.5 , Issue.4
    • Herlocker, J.1    Konstan, J.A.2    Riedl, J.3
  • 14
    • 35348870573 scopus 로고    scopus 로고
    • A comparison of collaborative-filtering recommendation algorithms for e-commerce
    • Z. Huang, D. Zeng, and H. Chen. A comparison of collaborative-filtering recommendation algorithms for e-commerce. IEEE Intelligent Systems, 22(5), 2007.
    • (2007) IEEE Intelligent Systems , vol.22 , Issue.5
    • Huang, Z.1    Zeng, D.2    Chen, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.