-
2
-
-
20844435854
-
Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
-
G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 2005.
-
(2005)
IEEE Transactions on Knowledge and Data Engineering
, vol.17
, Issue.6
-
-
Adomavicius, G.1
Tuzhilin, A.2
-
3
-
-
84887580616
-
Efficient top-n recommendation for very large scale binary rated datasets
-
F. Aiolli. Efficient top-n recommendation for very large scale binary rated datasets. In ACM Recommender Systems, 2013.
-
(2013)
ACM Recommender Systems
-
-
Aiolli, F.1
-
7
-
-
33645149161
-
Fast low-rank modifications of the thin singular value decomposition
-
M. Brand. Fast low-rank modifications of the thin singular value decomposition. Linear algebra and its applications, 415(1), 2006.
-
(2006)
Linear Algebra and its Applications
, vol.415
, Issue.1
-
-
Brand, M.1
-
8
-
-
31844446958
-
Learning to rank using gradient descent
-
C. J. C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender. Learning to rank using gradient descent. In International Conference on Machine Learning, 2005.
-
(2005)
International Conference on Machine Learning
-
-
Burges, C.J.C.1
Shaked, T.2
Renshaw, E.3
Lazier, A.4
Deeds, M.5
Hamilton, N.6
Hullender, G.7
-
9
-
-
34547987951
-
Learning to rank: From pairwise approach to listwise approach
-
Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to rank: From pairwise approach to listwise approach. In International Conference on Machine Learning, 2007.
-
(2007)
International Conference on Machine Learning
-
-
Cao, Z.1
Qin, T.2
Liu, T.-Y.3
Tsai, M.-F.4
Li, H.5
-
11
-
-
79960425522
-
Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions
-
N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2), 2011.
-
(2011)
SIAM Review
, vol.53
, Issue.2
-
-
Halko, N.1
Martinsson, P.G.2
Tropp, J.A.3
-
12
-
-
3042829247
-
An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms
-
J. Herlocker, J. A. Konstan, and J. Riedl. An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms. Information Retrieval, 5(4), 2002.
-
(2002)
Information Retrieval
, vol.5
, Issue.4
-
-
Herlocker, J.1
Konstan, J.A.2
Riedl, J.3
-
14
-
-
35348870573
-
A comparison of collaborative-filtering recommendation algorithms for e-commerce
-
Z. Huang, D. Zeng, and H. Chen. A comparison of collaborative-filtering recommendation algorithms for e-commerce. IEEE Intelligent Systems, 22(5), 2007.
-
(2007)
IEEE Intelligent Systems
, vol.22
, Issue.5
-
-
Huang, Z.1
Zeng, D.2
Chen, H.3
-
22
-
-
0013312710
-
-
Technical report, DTIC Document
-
B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Application of dimensionality reduction in recommender system - a case study. Technical report, DTIC Document, 2000.
-
(2000)
Application of Dimensionality Reduction in Recommender System - A Case Study
-
-
Sarwar, B.1
Karypis, G.2
Konstan, J.3
Riedl, J.4
|