메뉴 건너뛰기




Volumn 86, Issue , 2016, Pages 1-12

A probabilistic data-driven framework for scoring the preoperative recipient-donor heart transplant survival

Author keywords

Bayesian Belief Networks; Data mining; Genetic algorithms; Healthcare analytics; Medical decision making; United Network for Organ Sharing (UNOS)

Indexed keywords

DATA MINING; DECISION SUPPORT SYSTEMS; GENETIC ALGORITHMS; NEURAL NETWORKS; TREES (MATHEMATICS);

EID: 84980053542     PISSN: 01679236     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.dss.2016.02.007     Document Type: Article
Times cited : (64)

References (87)
  • 1
    • 84857854060 scopus 로고    scopus 로고
    • [cited 2014 01/26]; Available from
    • What is heart failure? 2012 [cited 2014 01/26]; Available from: http://www.nhlbi.nih.gov/health/health-topics/topics/hf/
    • (2012) What Is Heart Failure?
  • 2
    • 84878506359 scopus 로고    scopus 로고
    • The heart failure epidemic
    • J. López-Sendón The heart failure epidemic Medicographia 33 4 2011 363 369
    • (2011) Medicographia , vol.33 , Issue.4 , pp. 363-369
    • López-Sendón, J.1
  • 3
    • 84980052143 scopus 로고    scopus 로고
    • 01/03/2012 01/31/2014]; Available from
    • What is heart transplant? 2012 01/03/2012 01/31/2014]; Available from: http://www.nhlbi.nih.gov/health/health-topics/topics/ht/
    • (2012) What Is Heart Transplant?
  • 4
    • 84980053559 scopus 로고    scopus 로고
    • [cited 2014 01/26]; Available from
    • What to expect before a heart transplant? 2012 [cited 2014 01/26]; Available from: http://www.nhlbi.nih.gov/health/health-topics/topics/ht/before.html
    • (2012) What to Expect before A Heart Transplant?
  • 6
    • 84980052743 scopus 로고    scopus 로고
    • 01/26/2015]; Available from
    • Heart transplant 2015 01/26/2015]; Available from: http://my.clevelandclinic.org/services/hic-Surgical-Treatments-for-Heart-Failure/transplant
    • (2015) Heart Transplant
  • 7
    • 10444237986 scopus 로고    scopus 로고
    • A decision-rule for transplanting non-cadaveric organs
    • A. Levy A decision-rule for transplanting non-cadaveric organs European Journal of Operational Research 164 2 2005 548 554
    • (2005) European Journal of Operational Research , vol.164 , Issue.2 , pp. 548-554
    • Levy, A.1
  • 9
    • 14644405021 scopus 로고    scopus 로고
    • Predicting survival time for kidney dialysis patients: A data mining approach
    • A. Kusiak, B. Dixon, and S. Shah Predicting survival time for kidney dialysis patients: a data mining approach Computers in Biology and Medicine 35 4 2005 311 327
    • (2005) Computers in Biology and Medicine , vol.35 , Issue.4 , pp. 311-327
    • Kusiak, A.1    Dixon, B.2    Shah, S.3
  • 11
  • 19
    • 79960970389 scopus 로고    scopus 로고
    • Who is the high-risk recipient? Predicting mortality after heart transplant using pretransplant donor and recipient risk factors
    • (discussion 527)
    • K.N. Hong, A. Iribarne, B. Worku, H. Takayama, A.C. Gelijns, Y. Naka, V. Jeevanandam, and M.J. Russo Who is the high-risk recipient? Predicting mortality after heart transplant using pretransplant donor and recipient risk factors The Annals of Thoracic Surgery 92 2 2011 520 527 (discussion 527)
    • (2011) The Annals of Thoracic Surgery , vol.92 , Issue.2 , pp. 520-527
    • Hong, K.N.1    Iribarne, A.2    Worku, B.3    Takayama, H.4    Gelijns, A.C.5    Naka, Y.6    Jeevanandam, V.7    Russo, M.J.8
  • 21
    • 71549125894 scopus 로고    scopus 로고
    • Predicting the graft survival for heart-lung transplantation patients: An integrated data mining methodology
    • A. Oztekin, D. Delen, and Z. Kong Predicting the graft survival for heart-lung transplantation patients: an integrated data mining methodology International Journal of Medical Informatics 78 12 2009 e84 e96
    • (2009) International Journal of Medical Informatics , vol.78 , Issue.12 , pp. e84-e96
    • Oztekin, A.1    Delen, D.2    Kong, Z.3
  • 22
    • 67049165542 scopus 로고    scopus 로고
    • Transplantation: Neural networks for predicting graft survival
    • B. Kaplan, and J. Schold Transplantation: neural networks for predicting graft survival Nature Reviews Nephrology 5 4 2009 190 192
    • (2009) Nature Reviews Nephrology , vol.5 , Issue.4 , pp. 190-192
    • Kaplan, B.1    Schold, J.2
  • 25
    • 34547933045 scopus 로고    scopus 로고
    • Using Bayesian networks to predict survival of liver transplant patients
    • American Medical Informatics Association
    • N. Hoot, and D. Aronsky Using Bayesian networks to predict survival of liver transplant patients AMIA Annual Symposium Proceedings 2005 American Medical Informatics Association
    • (2005) AMIA Annual Symposium Proceedings
    • Hoot, N.1    Aronsky, D.2
  • 26
    • 51849110999 scopus 로고    scopus 로고
    • A tutorial on learning with Bayesian networks
    • Springer
    • D. Heckerman A tutorial on learning with Bayesian networks Innovations in Bayesian Networks 2008 Springer 33 82
    • (2008) Innovations in Bayesian Networks , pp. 33-82
    • Heckerman, D.1
  • 27
    • 84908498036 scopus 로고    scopus 로고
    • UNOS 2014/6/2]; Available from
    • UNOS About us 2014 2014/6/2]; Available from: http://www.unos.org/contact/index.php
    • (2014) About Us
  • 28
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi, and G.H. John Wrappers for feature subset selection Artificial Intelligence 97 1 1997 273 324
    • (1997) Artificial Intelligence , vol.97 , Issue.1 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 29
    • 0013125561 scopus 로고    scopus 로고
    • Feature selection with neural networks
    • P. Leray, and P. Gallinari Feature selection with neural networks Behaviormetrika 26 1999 145 166
    • (1999) Behaviormetrika , vol.26 , pp. 145-166
    • Leray, P.1    Gallinari, P.2
  • 31
    • 33750591809 scopus 로고    scopus 로고
    • Feature selection using decision tree and classification through proximal support vector machine for fault diagnostics of roller bearing
    • V. Sugumaran, V. Muralidharan, and K.I. Ramachandran Feature selection using decision tree and classification through proximal support vector machine for fault diagnostics of roller bearing Mechanical Systems and Signal Processing 21 2 2007 930 942
    • (2007) Mechanical Systems and Signal Processing , vol.21 , Issue.2 , pp. 930-942
    • Sugumaran, V.1    Muralidharan, V.2    Ramachandran, K.I.3
  • 35
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • R. Kohavi A study of cross-validation and bootstrap for accuracy estimation and model selection Ijcai 1995
    • (1995) Ijcai
    • Kohavi, R.1
  • 38
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J.R. Quinlan Induction of decision trees Machine Learning 1 1 1986 81 106
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 43
    • 0037093163 scopus 로고    scopus 로고
    • Making best use of model evaluations to compute sensitivity indices
    • A. Saltelli Making best use of model evaluations to compute sensitivity indices Computer Physics Communications 145 2 2002 280 297
    • (2002) Computer Physics Communications , vol.145 , Issue.2 , pp. 280-297
    • Saltelli, A.1
  • 45
    • 45249128876 scopus 로고
    • Combining forecasts: A review and annotated bibliography
    • R.T. Clemen Combining forecasts: a review and annotated bibliography International Journal of Forecasting 5 4 1989 559 583
    • (1989) International Journal of Forecasting , vol.5 , Issue.4 , pp. 559-583
    • Clemen, R.T.1
  • 47
    • 34547697309 scopus 로고    scopus 로고
    • Movie forecast guru: A web-based DSS for Hollywood managers
    • D. Delen, R. Sharda, and P. Kumar Movie forecast guru: A web-based DSS for Hollywood managers Decision Support Systems 43 4 2007 1151 1170
    • (2007) Decision Support Systems , vol.43 , Issue.4 , pp. 1151-1170
    • Delen, D.1    Sharda, R.2    Kumar, P.3
  • 48
    • 0033257342 scopus 로고    scopus 로고
    • A genetic algorithm to select variables in logistic regression: Example in the domain of myocardial infarction
    • S. Vinterbo, and L. Ohno-Machado A genetic algorithm to select variables in logistic regression: example in the domain of myocardial infarction Proceedings of the AMIA Symposium 1999 984 988
    • (1999) Proceedings of the AMIA Symposium , pp. 984-988
    • Vinterbo, S.1    Ohno-Machado, L.2
  • 49
    • 0029848374 scopus 로고    scopus 로고
    • Image feature selection by a genetic algorithm: Application to classification of mass and normal breast tissue
    • B. Sahiner, H.P. Chan, D. Wei, N. Petrick, M.A. Helvie, D.D. Adler, and M.M. Goodsitt Image feature selection by a genetic algorithm: application to classification of mass and normal breast tissue Medical Physics 23 10 1996 1671 1684
    • (1996) Medical Physics , vol.23 , Issue.10 , pp. 1671-1684
    • Sahiner, B.1    Chan, H.P.2    Wei, D.3    Petrick, N.4    Helvie, M.A.5    Adler, D.D.6    Goodsitt, M.M.7
  • 50
    • 0032895111 scopus 로고    scopus 로고
    • Selected techniques for data mining in medicine
    • N. Lavrač Selected techniques for data mining in medicine Artificial Intelligence in Medicine 16 1 1999 3 23
    • (1999) Artificial Intelligence in Medicine , vol.16 , Issue.1 , pp. 3-23
    • Lavrač, N.1
  • 51
    • 0033906922 scopus 로고    scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • A.E. Hoerl, and R.W. Kennard Ridge regression: biased estimation for nonorthogonal problems Technometrics 42 1 2000 80 86
    • (2000) Technometrics , vol.42 , Issue.1 , pp. 80-86
    • Hoerl, A.E.1    Kennard, R.W.2
  • 53
    • 0035551937 scopus 로고    scopus 로고
    • Modeling medical prognosis: Survival analysis techniques
    • L. Ohno-Machado Modeling medical prognosis: survival analysis techniques Journal of Biomedical Informatics 34 6 2001 428 439
    • (2001) Journal of Biomedical Informatics , vol.34 , Issue.6 , pp. 428-439
    • Ohno-Machado, L.1
  • 54
    • 0035141011 scopus 로고    scopus 로고
    • Hypertension and health-related quality of life. An epidemiological study in Sweden
    • C. Bardage, and D.G. Isacson Hypertension and health-related quality of life. An epidemiological study in Sweden Journal of Clinical Epidemiology 54 2 2001 172 181
    • (2001) Journal of Clinical Epidemiology , vol.54 , Issue.2 , pp. 172-181
    • Bardage, C.1    Isacson, D.G.2
  • 57
    • 0034722922 scopus 로고    scopus 로고
    • First report of the united network for organ sharing transplant tumor registry: Donors with a history of cancer
    • H.M. Kauffman, M.A. McBride, and F.L. Delmonico First report of the united network for organ sharing transplant tumor registry: donors with a history of cancer Transplantation 70 12 2000 1747 1751
    • (2000) Transplantation , vol.70 , Issue.12 , pp. 1747-1751
    • Kauffman, H.M.1    McBride, M.A.2    Delmonico, F.L.3
  • 60
    • 0034573064 scopus 로고    scopus 로고
    • Automatic identification of patients eligible for a pneumonia guideline
    • American Medical Informatics Association
    • D. Aronsky, and P.J. Haug Automatic identification of patients eligible for a pneumonia guideline Proceedings of the AMIA Symposium 2000 American Medical Informatics Association
    • (2000) Proceedings of the AMIA Symposium
    • Aronsky, D.1    Haug, P.J.2
  • 63
    • 33747603683 scopus 로고    scopus 로고
    • Bayesian network to predict breast cancer risk of mammographic microcalcifications and reduce number of benign biopsy results: Initial experience
    • E.S. Burnside, D.L. Rubin, J.P. Fine, R.D. Shachter, G.A. Sisney, and W.K. Leung Bayesian network to predict breast cancer risk of mammographic microcalcifications and reduce number of benign biopsy results: initial experience Radiology 240 3 2006 666 673
    • (2006) Radiology , vol.240 , Issue.3 , pp. 666-673
    • Burnside, E.S.1    Rubin, D.L.2    Fine, J.P.3    Shachter, R.D.4    Sisney, G.A.5    Leung, W.K.6
  • 65
    • 0028874554 scopus 로고
    • Prostatic intraepithelial neoplasia (PIN). Performance of Bayesian belief network for diagnosis and grading
    • R. Montironi, P.H. Bartels, D. Thompson, M. Scarpelli, and P.W. Hamilton Prostatic intraepithelial neoplasia (PIN). Performance of Bayesian belief network for diagnosis and grading The Journal of Pathology 177 2 1995 153 162
    • (1995) The Journal of Pathology , vol.177 , Issue.2 , pp. 153-162
    • Montironi, R.1    Bartels, P.H.2    Thompson, D.3    Scarpelli, M.4    Hamilton, P.W.5
  • 66
    • 0033035817 scopus 로고    scopus 로고
    • Development of a Bayesian network for the prognosis of head injuries using graphical model selection techniques
    • G.C. Sakellaropoulos, and G.C. Nikiforidis Development of a Bayesian network for the prognosis of head injuries using graphical model selection techniques Methods of Information in Medicine 38 1999 37 42
    • (1999) Methods of Information in Medicine , vol.38 , pp. 37-42
    • Sakellaropoulos, G.C.1    Nikiforidis, G.C.2
  • 67
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • N. Friedman Inferring cellular networks using probabilistic graphical models Science 303 5659 2004 799 805
    • (2004) Science , vol.303 , Issue.5659 , pp. 799-805
    • Friedman, N.1
  • 68
    • 84896727645 scopus 로고    scopus 로고
    • A new method for predicting patient survivorship using efficient Bayesian network learning
    • X. Jiang, D. Xue, A. Brufsky, S. Khan, and R. Neapolitan A new method for predicting patient survivorship using efficient Bayesian network learning Cancer Informatics 13 2014 47 57
    • (2014) Cancer Informatics , vol.13 , pp. 47-57
    • Jiang, X.1    Xue, D.2    Brufsky, A.3    Khan, S.4    Neapolitan, R.5
  • 69
    • 0344309883 scopus 로고    scopus 로고
    • Bayesian networks for knowledge discovery in large datasets: Basics for nurse researchers
    • S.-M. Lee, and P.A. Abbott Bayesian networks for knowledge discovery in large datasets: basics for nurse researchers Journal of Biomedical Informatics 36 4 2003 389 399
    • (2003) Journal of Biomedical Informatics , vol.36 , Issue.4 , pp. 389-399
    • Lee, S.-M.1    Abbott, P.A.2
  • 72
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • - +
    • C.K. Chow, and C.N. Liu Approximating discrete probability distributions with dependence trees IEEE Transactions on Information Theory 14 3 1968 462 - +
    • (1968) IEEE Transactions on Information Theory , vol.14 , Issue.3 , pp. 462
    • Chow, C.K.1    Liu, C.N.2
  • 75
    • 84980052991 scopus 로고    scopus 로고
    • Computer-based decision support in the management of primary gastric non-Hodgkin lymphoma
    • P. Lucas, H. Boot, and B. Taal Computer-based decision support in the management of primary gastric non-Hodgkin lymphoma Change 1 1998 4
    • (1998) Change , vol.1 , pp. 4
    • Lucas, P.1    Boot, H.2    Taal, B.3
  • 76
    • 0034235303 scopus 로고    scopus 로고
    • A probabilistic and decision-theoretic approach to the management of infectious disease at the ICU
    • P.J.F. Lucas, N.C. de Bruijn, K. Schurink, and A. Hoepelman A probabilistic and decision-theoretic approach to the management of infectious disease at the ICU Artificial Intelligence in Medicine 19 3 2000 251 279
    • (2000) Artificial Intelligence in Medicine , vol.19 , Issue.3 , pp. 251-279
    • Lucas, P.J.F.1    De Bruijn, N.C.2    Schurink, K.3    Hoepelman, A.4
  • 83
    • 37849007302 scopus 로고    scopus 로고
    • Influence of education level on cancer survival in Sweden
    • S. Hussain, P. Lenner, J. Sundquist, and K. Hemminki Influence of education level on cancer survival in Sweden Annals of Oncology 19 1 2008 156 162
    • (2008) Annals of Oncology , vol.19 , Issue.1 , pp. 156-162
    • Hussain, S.1    Lenner, P.2    Sundquist, J.3    Hemminki, K.4
  • 86
    • 0031309658 scopus 로고    scopus 로고
    • The influence of psychosocial factors on heart transplantation decisions and outcomes
    • S. Geller, and T. Connolly The influence of psychosocial factors on heart transplantation decisions and outcomes Journal of Transplant Coordination 7 4 1997 173 179
    • (1997) Journal of Transplant Coordination , vol.7 , Issue.4 , pp. 173-179
    • Geller, S.1    Connolly, T.2
  • 87
    • 0029626657 scopus 로고
    • Psychosocial evaluation and prediction of compliance problems and morbidity after heart transplantation
    • P. Shapiro, D. Williams, A. Foray, I. Gelman, N. Wukich, and R. Sciacca Psychosocial evaluation and prediction of compliance problems and morbidity after heart transplantation Transplantation 60 12 1995 1462
    • (1995) Transplantation , vol.60 , Issue.12 , pp. 1462
    • Shapiro, P.1    Williams, D.2    Foray, A.3    Gelman, I.4    Wukich, N.5    Sciacca, R.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.