메뉴 건너뛰기




Volumn 34, Issue 6, 2001, Pages 428-439

Modeling medical prognosis: Survival analysis techniques

Author keywords

Cox proportional hazards; Machine learning; Neural networks; Prognosis; Survival analysis

Indexed keywords

DATA ANALYSIS; HUMAN; IMPERIUM; KAPLAN MEIER METHOD; LOGISTIC REGRESSION ANALYSIS; NERVE CELL NETWORK; NONBIOLOGICAL MODEL; NONHUMAN; NONLINEAR SYSTEM; NONPARAMETRIC TEST; PRIORITY JOURNAL; PROGNOSIS; REVIEW; SURVIVAL; THEORETICAL MODEL; TIME PERCEPTION;

EID: 0035551937     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1006/jbin.2002.1038     Document Type: Review
Times cited : (102)

References (69)
  • 2
    • 0026409568 scopus 로고
    • The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults
    • (1991) Chest , vol.100 , Issue.6 , pp. 1619-1636
    • Knaus, W.A.1
  • 11
    • 77956891394 scopus 로고
    • A generalized Kruskal-Wallis test for comparing K samples subject to unequal patterns of censorship
    • (1970) Biometrika , vol.57 , pp. 579-594
    • Breslow, N.1
  • 13
    • 0024406354 scopus 로고
    • Prognosis in primary biliary cirrhosis: Model for decision making
    • (1989) Hepatology , vol.10 , Issue.1 , pp. 1-7
    • Dickson, E.R.1
  • 14
    • 0022546041 scopus 로고
    • Predicting outcome in coronary disease. Statistical models vs expert clinicians
    • (1986) Am J Med , vol.80 , Issue.4 , pp. 553-560
    • Lee, K.L.1
  • 16
    • 0030938915 scopus 로고    scopus 로고
    • A comparison of Cox proportional hazards and artificial neural network models for medical prognosis
    • (1997) Comput Biol Med , vol.27 , Issue.1 , pp. 55-65
    • Ohno-Machado, L.1
  • 18
    • 0025695593 scopus 로고
    • Relation of pooled logistic regression to time-dependent Cox regression analysis: The Framingham heart study
    • (1990) Stat Med , vol.9 , Issue.12 , pp. 1501-1515
    • D'Agostino, R.B.1
  • 20
    • 0026409568 scopus 로고
    • The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults
    • (1991) Chest , vol.100 , Issue.6 , pp. 1619-1636
    • Knaus, W.A.1
  • 21
    • 0030603526 scopus 로고    scopus 로고
    • Prediction of outcome in critically ill patients using artificial neural network synthesised by genetic algorithm
    • (1996) Lancet , vol.347 , Issue.9009 , pp. 1146-1150
    • Dybowski, R.1
  • 23
    • 0026485412 scopus 로고
    • Percutaneous transluminal coronary angioplasty in New York State. Risk factors and outcomes
    • (1992) JAMA , vol.268 , Issue.21 , pp. 3092-3097
    • Hannan, E.L.1
  • 24
    • 0027043213 scopus 로고
    • Prediction of risk for hemodynamic compromise during percutaneous transluminal coronary angioplasty
    • (1992) Am J Cardiol , vol.70 , Issue.20 , pp. 1540-1545
    • Bergelson, B.A.1
  • 26
    • 0030883718 scopus 로고    scopus 로고
    • Patient-specific predictions of outcomes in myocardial infarction for real-time emergency use: A thrombolytic predictive instrument
    • (1997) Ann Intern Med , vol.127 , Issue.7 , pp. 538-556
    • Selker, H.P.1
  • 27
    • 0029789019 scopus 로고    scopus 로고
    • Predictors of outcome of epilepsy surgery: Multivariate analysis with validation
    • (1996) Epilepsia , vol.37 , Issue.9 , pp. 814-821
    • Armon, C.1
  • 28
    • 0031670506 scopus 로고    scopus 로고
    • The influence of diabetes mellitus on acute and late clinical outcomes following coronary stent implantation
    • (1998) J Am Coll Cardiol , vol.32 , Issue.3 , pp. 584-589
    • Abizaid, A.1
  • 29
    • 0031080885 scopus 로고    scopus 로고
    • An evaluation of machine-learning methods for predicting pneumonia mortality
    • (1997) Artif Intel Med , vol.9 , Issue.2 , pp. 107-138
    • Cooper, G.F.1
  • 32
    • 0031885698 scopus 로고    scopus 로고
    • Prediction of hemorrhagic blood loss with a genetic algorithm neural network
    • (1998) J Appl Physiol , vol.84 , Issue.1 , pp. 357-361
    • Jefferson, M.F.1
  • 33
    • 0026737665 scopus 로고
    • Prediction criteria for successful weaning from respiratory support: Statistical and connectionist analyses
    • published erratum appears in Crit Care Med 1994;22(1):183
    • (1992) Crit Care Med , vol.20 , Issue.9 , pp. 1295-1301
    • Ashutosh, K.1
  • 34
    • 0030815647 scopus 로고    scopus 로고
    • A prognostic computer model to predict individual outcome in interventional cardiology. The INTERVENT project
    • (1997) Eur Heart J , vol.18 , Issue.10 , pp. 1611-1619
    • Budde, T.1
  • 38
    • 0031905762 scopus 로고    scopus 로고
    • The end of the injury severity score (ISS) and the trauma and injury severity score (TRISS): ICISS, an international classification of diseases, ninth revision-based prediction tool, out-performs both ISS and TRISS as predictors of trauma patient survival, hospital charges, and hospital length of stay
    • (1998) J Trauma , vol.44 , Issue.1 , pp. 41-49
    • Rutledge, R.1
  • 39
    • 0028871535 scopus 로고
    • Prediction of rib fracture injury outcome by an artificial neural network
    • (1995) J Trauma , vol.39 , Issue.5 , pp. 915-921
    • Dombi, G.W.1
  • 40
    • 0031691761 scopus 로고    scopus 로고
    • Use of an artificial neural network to predict length of stay in acute pancreatitis
    • (1998) Am Surgeon , vol.64 , Issue.9 , pp. 868-872
    • Pofahl, W.E.1
  • 41
    • 0031513627 scopus 로고    scopus 로고
    • Modular neural networks for medical prognosis: Quantifying the benefits of combining neural networks for survival prediction
    • (1997) Connect Sci , vol.9 , Issue.1 , pp. 71-86
    • Ohno-Machado, L.1    Musen, M.2
  • 42
    • 0027653891 scopus 로고
    • Prediction of valve-related complications for artificial heart valves using adaptive neural networks: A preliminary study
    • (1993) J Heart Valve Dis , vol.2 , Issue.5 , pp. 504-508
    • Katz, A.S.1
  • 44
    • 0035206621 scopus 로고    scopus 로고
    • Recurrent neural networks for predicting outcomes after liver transplantation: Representing temporal sequence of clinical observations
    • (2001) Methods Inf Med , vol.40 , Issue.5 , pp. 386-391
    • Parmanto, B.1    Doyle, H.R.2
  • 45
    • 0034970056 scopus 로고    scopus 로고
    • Clinical validation of an artificial neural network trained to identify acute allograft rejection in liver transplant recipients
    • (2001) Liver Transplant , vol.7 , Issue.6 , pp. 496-503
    • Hughes, V.F.1
  • 46
    • 0030751882 scopus 로고    scopus 로고
    • The prediction of risk of recurrence and time to recurrence of hepatocellular carcinoma after orthotopic liver transplantation: A pilot study
    • (1997) Hepatology , vol.26 , Issue.2 , pp. 444-450
    • Marsh, J.W.1
  • 48
    • 0028261647 scopus 로고
    • Predicting outcomes after liver transplantation. A connectionist approach
    • (1994) Ann Surg , vol.219 , Issue.4 , pp. 408-415
    • Doyle, H.R.1
  • 49
    • 0029995166 scopus 로고    scopus 로고
    • Performance of multi-layer feedforward neural networks to predict liver transplantation outcome
    • (1996) Methods Inform Med , vol.35 , Issue.1 , pp. 12-18
    • Dvorchik, I.1
  • 50
    • 0033084166 scopus 로고    scopus 로고
    • DNA ploidy and cell cycle distribution of breast cancer aspirate cells measured by image cytometry and analyzed by artificial neural networks for their prognostic significance
    • (1999) IEEE Trans Inf Technol Biomed , vol.3 , Issue.1 , pp. 61-69
    • Naguib, R.N.1
  • 51
    • 0033663884 scopus 로고    scopus 로고
    • A neural network predicts progression for men with Gleason score 3 + 4 versus 4 + 3 tumors after radical prostatectomy
    • (2000) Urology , vol.56 , Issue.6 , pp. 994-999
    • Han, M.1
  • 52
    • 0032167961 scopus 로고    scopus 로고
    • Ten-year disease free survival after transperineal sonography-guided iodine-125 brachytherapy with or without 45-gray external beam irradiation in the treatment of patients with clinically localized, low to high Gleason grade prostate carcinoma
    • (1998) Cancer , vol.83 , Issue.5 , pp. 989-1001
    • Ragde, H.1
  • 53
    • 0031866151 scopus 로고    scopus 로고
    • Neural network analysis of combined conventional and experimental prognostic markers in prostate cancer: A pilot study
    • (1998) Br J Cancer , vol.78 , Issue.2 , pp. 246-250
    • Naguib, R.N.1
  • 54
    • 0030743761 scopus 로고    scopus 로고
    • Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions
    • (1997) Lancet , vol.350 , Issue.9076 , pp. 469-472
    • Bottaci, L.1
  • 55
    • 0030764424 scopus 로고    scopus 로고
    • Prediction of nodal metastasis and prognosis in breast cancer: A neural model
    • (1997) Anticancer Res , vol.17 , Issue.4 A , pp. 2735-2741
    • Naguib, R.N.1
  • 56
    • 0030951433 scopus 로고    scopus 로고
    • Comparison of a genetic algorithm neural network with logistic regression for predicting outcome after surgery for patients with non-small cell lung carcinoma
    • (1997) Cancer , vol.79 , Issue.7 , pp. 1338-1342
    • Jefferson, M.F.1
  • 57
    • 0031047117 scopus 로고    scopus 로고
    • Artificial neural networks improve the accuracy of cancer survival prediction
    • (1997) Cancer , vol.79 , Issue.4 , pp. 857-862
    • Burke, H.B.1
  • 58
    • 0028944092 scopus 로고
    • Prediction of the early prognosis of the hepatectomized patient with hepatocellular carcinoma with a neural network
    • (1995) Comput Biol Med , vol.25 , Issue.1 , pp. 49-59
    • Hamamoto, I.1
  • 59
    • 0028044828 scopus 로고
    • Artificial neural networks for cancer research: Outcome prediction
    • (1994) Semin Surg Oncol , vol.10 , Issue.1 , pp. 73-79
    • Burke, H.B.1
  • 60
    • 0035871397 scopus 로고    scopus 로고
    • Impact of different variables on the outcome of patients with clinically confined prostate carcinoma: Prediction of pathologic stage and biochemical failure using an artificial neural network
    • (2001) Cancer , vol.91 , Issue.8 SUPPL. , pp. 1653-1660
    • Ziada, A.M.1
  • 61
    • 0027529453 scopus 로고
    • Artificial neural networks for predicting failure to survive following in-hospital cardiopulmonary resuscitation
    • (1993) J Fam Pract , vol.36 , Issue.3 , pp. 297-303
    • Ebell, M.H.1
  • 62
    • 0027178064 scopus 로고
    • A Nnw approach to probability of survival scoring for trauma quality assurance
    • (1993) J Trauma , vol.34 , Issue.6 , pp. 863-868
    • McGonigal, M.D.1
  • 63
    • 0031193620 scopus 로고    scopus 로고
    • Sequential versus standard neural networks for pattern recognition: An example using the domain of coronary heart disease
    • (1997) Comput Biol Med , vol.27 , Issue.4 , pp. 267-281
    • Ohno-Machado, L.1    Musen, M.2
  • 64
    • 0030763240 scopus 로고    scopus 로고
    • The application of neural networks in predicting the outcome of in vitro fertilization
    • (1997) Hum Reprod , vol.12 , Issue.7 , pp. 1454-1457
    • Kaufmann, S.J.1
  • 67
    • 0032032275 scopus 로고    scopus 로고
    • Predicting response to adjuvant and radiation therapy in patients with early stage breast carcinoma
    • (1998) Cancer , vol.821 , Issue.5 , pp. 874-877
    • Burke, H.B.1
  • 68
    • 0031047117 scopus 로고    scopus 로고
    • Artificial neural networks improve the accuracy of cancer survival prediction
    • (1997) Cancer , vol.79 , Issue.4 , pp. 857-862
    • Burke, H.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.