메뉴 건너뛰기




Volumn 36, Issue 6, 2012, Pages 561-569

Bayesian modeling of pretransplant variables accurately predicts kidney graft survival

Author keywords

Bayesian Belief Network; Graft failure; Kidney transplant; Multivariate analysis; Renal allograft; United States Renal Data System

Indexed keywords

ADULT; AREA UNDER THE CURVE; ARTICLE; BAYES THEOREM; BODY MASS; CONSTRUCT VALIDITY; EXTERNAL VALIDITY; FEMALE; GRAFT FAILURE; GRAFT SURVIVAL; HUMAN; INTERNAL VALIDITY; KIDNEY GRAFT; MACHINE LEARNING; MAJOR CLINICAL STUDY; MALE; OUTCOME ASSESSMENT; PREDICTIVE VALUE; PRIORITY JOURNAL; RACE; RETROSPECTIVE STUDY; SENSITIVITY AND SPECIFICITY;

EID: 84870353215     PISSN: 02508095     EISSN: 14219670     Source Type: Journal    
DOI: 10.1159/000345552     Document Type: Article
Times cited : (48)

References (20)
  • 1
    • 44449142555 scopus 로고    scopus 로고
    • Minimizing morbidity of organ donation: Analysis of factors for perioperative complications after living-donor nephrectomy in the United States
    • Patel S, Cassuto J, Orloff M, et al: Minimizing morbidity of organ donation: analysis of factors for perioperative complications after living-donor nephrectomy in the United States. Tra nsplantation 2008; 85: 561.
    • (2008) Tra Nsplantation , vol.85 , pp. 561
    • Patel, S.1    Cassuto, J.2    Orloff, M.3
  • 2
    • 84871618823 scopus 로고    scopus 로고
    • Bethesda National Institutes Of Health National Institute Of Diabetes And Digestive And Kidney Diseases, 2007 and 2011
    • United States Renal Data System, Researcher's Guide to the USRDS Database. Bethesda, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 2007 and 2011.
    • United States Renal Data System Researcher's Guide to the USRDS Database
  • 3
    • 58149358848 scopus 로고    scopus 로고
    • Prediction of graft survival of living-donor kidney transplantation: Nomograms or artificial neural networks?
    • Akl A, Ismail AM, Ghoneim M: Prediction of graft survival of living-donor kidney transplantation: nomograms or artificial neural networks? Transplantation 2008; 86: 1401.
    • (2008) Transplantation , vol.86 , pp. 1401
    • Akl, A.1    Ismail, A.M.2    Ghoneim, M.3
  • 4
    • 0344898384 scopus 로고    scopus 로고
    • Prediction of 3-yr cadaveric graft survival based on pretransplant variables in a large national dataset
    • Goldfarb-Rumyantzev AS, Scandling JD, Pappas L, Smout R, Horn SD: Prediction of 3-yr cadaveric graft survival based on pretransplant variables in a large national dataset. Clin Transplant 2003; 17:485.
    • (2003) Clin Transplant , vol.17 , pp. 485
    • Goldfarb-Rumyantzev, A.S.1    Scandling, J.D.2    Pappas, L.3    Smout, R.4    Horn, S.D.5
  • 5
    • 34648852342 scopus 로고    scopus 로고
    • Predicting kidney transplant survival using tree-based modeling
    • Krikov S, Khan A, Baird BC, et al: Predicting kidney transplant survival using tree-based modeling. ASAIO J 2007; 53: 592.
    • (2007) ASAIO J , vol.53 , pp. 592
    • Krikov, S.1    Khan, A.2    Baird, B.C.3
  • 6
    • 0141506860 scopus 로고    scopus 로고
    • Predicting mortality in patients with cirrhosis of liver with application of neural network technolog y
    • Banerjee R, Das A, Ghoshal UC, Sinha M: Predicting mortality in patients with cirrhosis of liver with application of neural network technolog y. J Gastroenterol Hepatol 2003; 18: 1054.
    • (2003) J Gastroenterol Hepatol , vol.18 , pp. 1054
    • Banerjee, R.1    Das, A.2    Ghoshal, U.C.3    Sinha, M.4
  • 7
    • 34547933045 scopus 로고    scopus 로고
    • Using Bayesian networks to predict survival of liver transplant patients
    • Hoot N, Aronsky D: Using Bayesian networks to predict survival of liver transplant patients. AMIA Annu Symp Proc 2005; 2005: 345.
    • (2005) AMIA Annu Symp Proc , vol.2005 , pp. 345
    • Hoot, N.1    Aronsky, D.2
  • 8
    • 0036898901 scopus 로고    scopus 로고
    • Bayesian analysis: A new statistical paradigm for new technolog y
    • Grunkemeier GL, Payne N: Bayesian analysis: a new statistical paradigm for new technolog y. Ann Thorac Surg 2002; 74: 1901.
    • (2002) Ann Thorac Surg , vol.74 , pp. 1901
    • Grunkemeier, G.L.1    Payne, N.2
  • 9
    • 0031915841 scopus 로고    scopus 로고
    • Diagnosis of early acute renal allograft rejection by evaluation of multiple histological features using a Bayesian belief network
    • Kazi JI, Furness PN, Nicholson M: Diagnosis of early acute renal allograft rejection by evaluation of multiple histological features using a Bayesian belief network. J Clin Pathol 1998; 51: 108.
    • (1998) J Clin Pathol , vol.51 , pp. 108
    • Kazi, J.I.1    Furness, P.N.2    Nicholson, M.3
  • 10
    • 0026953685 scopus 로고
    • How good are the data? USRDS data validation special study
    • How good are the data? USRDS data validation special study. Am J Kidney Dis 1992; 20(suppl 2):68.
    • (1992) Am J Kidney Dis , vol.20 , Issue.SUPPL. 2 , pp. 68
  • 12
    • 0345328194 scopus 로고    scopus 로고
    • Prediction of delayed renal allograft function using an artificial neural network
    • Brier ME, Ray PC, Klein JB: Prediction of delayed renal allograft function using an artificial neural network. Nephrol Dial Transplant 2003; 18: 2655.
    • (2003) Nephrol Dial Transplant , vol.18 , pp. 2655
    • Brier, M.E.1    Ray, P.C.2    Klein, J.B.3
  • 14
    • 59349114307 scopus 로고    scopus 로고
    • Nomograms for predicting graft function and survival in living donor kidney transplantation based on the UNOS Registry
    • Tiong HY, Goldfarb DA, Kattan MW, et al: Nomograms for predicting graft function and survival in living donor kidney transplantation based on the UNOS Registry. J Urol 2009; 181:1248.
    • (2009) J Urol , vol.181 , pp. 1248
    • Tiong, H.Y.1    Goldfarb, D.A.2    Kattan, M.W.3
  • 15
    • 65549142166 scopus 로고    scopus 로고
    • Outcomes of transplantation using kidneys from donors meeting expanded criteria in Australia and New Zealand, 1991 to 2005
    • Collins MG, Chang SH, Russ GR, McDonald SP: Outcomes of transplantation using kidneys from donors meeting expanded criteria in Australia and New Zealand, 1991 to 2005. Transplantation 2009; 87:1201.
    • (2009) Transplantation , vol.87 , pp. 1201
    • Collins, M.G.1    Chang, S.H.2    Russ, G.R.3    McDonald, S.P.4
  • 16
    • 33645004714 scopus 로고    scopus 로고
    • Optimal use of older donors and recipients in kidney transplantation
    • Stratta RJ, Sundberg AK, Rohr MS, et al: Optimal use of older donors and recipients in kidney transplantation. Surger y 2006; 139: 324.
    • (2006) Surger y , vol.139 , pp. 324
    • Stratta, R.J.1    Sundberg, A.K.2    Rohr, M.S.3
  • 17
    • 0034212592 scopus 로고    scopus 로고
    • The effect of age and prolonged cold ischemia times on the national allocation of cadaveric renal allografts
    • Lee CM, Carter JT, Randall HB, et al: The effect of age and prolonged cold ischemia times on the national allocation of cadaveric renal allografts. J Surg Res 2000; 91:83.
    • (2000) J Surg Res , vol.91 , pp. 83
    • Lee, C.M.1    Carter, J.T.2    Randall, H.B.3
  • 18
    • 0023028865 scopus 로고
    • Multivari-ate prediction model of kidney transplant success rates
    • Hennige M, Kohler CO, Opelz G: Multivari-ate prediction model of kidney transplant success rates. Transplantation 1986; 42:491.
    • (1986) Transplantation , vol.42 , pp. 491
    • Hennige, M.1    Kohler, C.O.2    Opelz, G.3
  • 19
    • 0037442270 scopus 로고    scopus 로고
    • Multi-variate analysis of donor risk factors for graft survival in kidney transplantation
    • Pessione F, Cohen S, Durand D, et al: Multi-variate analysis of donor risk factors for graft survival in kidney transplantation. Transplantation 2003; 75: 361.
    • (2003) Transplantation , vol.75 , pp. 361
    • Pessione, F.1    Cohen, S.2    Durand, D.3
  • 20
    • 2542504500 scopus 로고    scopus 로고
    • Incorporating recipient choice in kidney transplantation
    • Su X, Zenios SA, Chertow GM: Incorporating recipient choice in kidney transplantation. J Am Soc Nephrol 2004; 15:1656.
    • (2004) J Am Soc Nephrol , vol.15 , pp. 1656
    • Su, X.1    Zenios, S.A.2    Chertow, G.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.