메뉴 건너뛰기




Volumn 13, Issue , 2014, Pages 47-57

A new method for predicting patient survivorship using efficient Bayesian network learning

Author keywords

Bayesian network; Breast cancer; Cox proportional hazard model; Random survival forest; Survivorship prediction

Indexed keywords

ALGORITHM; ARTICLE; BAYESIAN LEARNING; BREAST CANCER; CANCER PATIENT; CANCER SURVIVAL; DECISION SUPPORT SYSTEM; HUMAN; PREDICTION; PROPORTIONAL HAZARDS MODEL; RECEIVER OPERATING CHARACTERISTIC; SENSITIVITY ANALYSIS; VALIDATION PROCESS;

EID: 84896727645     PISSN: None     EISSN: 11769351     Source Type: Journal    
DOI: 10.4137/CIN.S13053     Document Type: Article
Times cited : (16)

References (41)
  • 1
    • 84877028141 scopus 로고    scopus 로고
    • Comprehensive molecular portraits of human breast tumors
    • Koboldt DC, Fulton RS, McLellan MD, et al. Comprehensive molecular portraits of human breast tumors. Nature. 2012;490(7418):61-70.
    • (2012) Nature , vol.490 , Issue.7418 , pp. 61-70
    • Koboldt, D.C.1    Fulton, R.S.2    McLellan, M.D.3
  • 3
    • 84971357232 scopus 로고
    • Commentary: Prognostic models: Clinically useful or quickly forgotten
    • Wyatt J, Altman D. Commentary: prognostic models: clinically useful or quickly forgotten. Br Med J. 1995;311:1539-41.
    • (1995) Br Med J , vol.311 , pp. 1539-1541
    • Wyatt, J.1    Altman, D.2
  • 4
    • 33845209913 scopus 로고    scopus 로고
    • A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes
    • Nev R, Chin K, Fridlyand J, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2007;10:515-27.
    • (2007) Cancer Cell , vol.10 , pp. 515-527
    • Nev, R.1    Chin, K.2    Fridlyand, J.3
  • 5
    • 0000336139 scopus 로고
    • Regression models and life-tables
    • Cox DR. Regression models and life-tables. J R Stat Soc B. 1972;34(2):187-220.
    • (1972) J R Stat Soc B , vol.34 , Issue.2 , pp. 187-220
    • Cox, D.R.1
  • 7
    • 0024401372 scopus 로고
    • A linear regression model for the analysis of life times
    • Aalen OO. A linear regression model for the analysis of life times. Stat Med. 1989;8:907-25.
    • (1989) Stat Med , vol.8 , pp. 907-925
    • Aalen, O.O.1
  • 11
    • 84877352412 scopus 로고    scopus 로고
    • A k-nearest neighbors survival probability prediction system
    • Lowsky DJ, Ding Y, Lee DKK, et al. A k-nearest neighbors survival probability prediction system. Stat Med. 2012;32(12):2062-9.
    • (2012) Stat Med , vol.32 , Issue.12 , pp. 2062-2069
    • Lowsky, D.J.1    Ding, Y.2    Lee, D.K.K.3
  • 12
    • 0032730109 scopus 로고    scopus 로고
    • Artificial neural networks applied to survival prediction in breast cancer
    • Ludin M, Lundin J, Burke HB, et al. Artificial neural networks applied to survival prediction in breast cancer. Oncology. 1999;57(4):281-6.
    • (1999) Oncology , vol.57 , Issue.4 , pp. 281-286
    • Ludin, M.1    Lundin, J.2    Burke, H.B.3
  • 13
    • 77950565847 scopus 로고    scopus 로고
    • Comparison of Bayesian network and support vector machine models for two-year survival prediction in lung cancer patients treated with radiotherapy
    • Jayasurya K, Fung G, Yu S, Dehing-Oberije C, et al. Comparison of Bayesian network and support vector machine models for two-year survival prediction in lung cancer patients treated with radiotherapy. Med Phys. 2010;37(4):1401-7.
    • (2010) Med Phys , vol.37 , Issue.4 , pp. 1401-1407
    • Jayasurya, K.1    Fung, G.2    Yu, S.3    Dehing-Oberije, C.4
  • 14
    • 0344447109 scopus 로고    scopus 로고
    • Predicting survival in malignant skin melanoma using Bayesian networks automatically induced by genetic algorithms. An empirical comparison between different approaches
    • Sierra B, Larrañaga P. Predicting survival in malignant skin melanoma using Bayesian networks automatically induced by genetic algorithms. An empirical comparison between different approaches. Artif Intell Med. 1998;14(1-2):215-30.
    • (1998) Artif Intell Med , vol.14 , Issue.1-2 , pp. 215-230
    • Sierra, B.1    Larrañaga, P.2
  • 15
    • 0026636089 scopus 로고
    • Toward normative expert systems: Part I. The Pathfinder project
    • Heckerman D, Horvitz E, Nathwani B. Toward normative expert systems: Part I. The Pathfinder project. Methods Inf Med. 1992;31:90-105.
    • (1992) Methods Inf Med , vol.31 , pp. 90-105
    • Heckerman, D.1    Horvitz, E.2    Nathwani, B.3
  • 18
    • 84861527388 scopus 로고    scopus 로고
    • The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroup
    • Curtis C, Shah SP, Chin SF, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroup. Nature. 2012;486:346-52.
    • (2012) Nature , vol.486 , pp. 346-352
    • Curtis, C.1    Shah, S.P.2    Chin, S.F.3
  • 26
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman N, Linial M, Nachman I, Pe'er D. Using Bayesian networks to analyze expression data. J Comput Biol. 2000;7(3-4):601-20.
    • (2000) J Comput Biol , vol.7 , Issue.3-4 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 27
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks
    • Friedman N, Koller K. Being Bayesian about network structure: a Bayesian approach to structure discovery in Bayesian networks. Mach Learn. 2003;50:95-125.
    • (2003) Mach Learn , vol.50 , pp. 95-125
    • Friedman, N.1    Koller, K.2
  • 28
    • 3142556050 scopus 로고    scopus 로고
    • Optimizing exact genetic linkage computation
    • Fishelson M, Geiger D. Optimizing exact genetic linkage computation. J Comput Biol. 2004;11:114-21.
    • (2004) J Comput Biol , vol.11 , pp. 114-121
    • Fishelson, M.1    Geiger, D.2
  • 29
    • 84867429217 scopus 로고    scopus 로고
    • Mining strict epistatic interactions from high-dimensional datasets: Ameliorating the curse of dimensionality
    • doi:10.1371/journal.pone.0046771
    • Jiang X, Neapolitan RE. Mining strict epistatic interactions from high-dimensional datasets: ameliorating the curse of dimensionality. PLoS ONE. 2012;7(10):e46771. doi:10.1371/journal.pone.0046771.
    • (2012) PLoS ONE , vol.7 , Issue.10
    • Jiang, X.1    Neapolitan, R.E.2
  • 30
    • 0025401005 scopus 로고
    • The computational complexity of probabilistic inference using Bayesian belief networks
    • Cooper GF. The computational complexity of probabilistic inference using Bayesian belief networks. J Artif Intell. 1990;42(2-3):393-405.
    • (1990) J Artif Intell , vol.42 , Issue.2-3 , pp. 393-405
    • Cooper, G.F.1
  • 31
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper GF, Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Mach Learn. 1992;9:309-47.
    • (1992) Mach Learn , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 32
    • 0001063049 scopus 로고
    • Johnson's 'sufficientness postulate.'
    • Zabell SL. W.E. Johnson's 'sufficientness postulate.' Ann Stat. 1982;10(4):1090-9.
    • (1982) Ann Stat , vol.10 , Issue.4 , pp. 1090-1099
    • Zabell, S.L.W.E.1
  • 34
    • 0001019707 scopus 로고    scopus 로고
    • Learning Bayesian networks is NP-complete
    • Fisher D, Lenz H, eds., New York, NY: Springer
    • Chickering M. Learning Bayesian networks is NP-complete. In: Fisher D, Lenz H, eds. Learning from Data: Lecture Notes in Statistics. New York, NY: Springer; 1996:121-30.
    • (1996) Learning From Data: Lecture Notes In Statistics , pp. 121-130
    • Chickering, M.1
  • 35
    • 1842292106 scopus 로고    scopus 로고
    • Use of influence diagrams to structure medical decisions
    • Nease RF Jr, Owens DK. Use of influence diagrams to structure medical decisions. Med Decis Making. 1997;7(3):263-75.
    • (1997) Med Decis Making , vol.7 , Issue.3 , pp. 263-275
    • Nease Jr., R.F.1    Owens, D.K.2
  • 36
    • 33846660949 scopus 로고    scopus 로고
    • Using Bayesian networks for bankruptcy prediction: Some methodological issues
    • Sun L, Shenoy P. Using Bayesian networks for bankruptcy prediction: some methodological issues. Eur J Oper Res. 2007;180(2):738-53.
    • (2007) Eur J Oper Res , vol.180 , Issue.2 , pp. 738-753
    • Sun, L.1    Shenoy, P.2
  • 40
    • 34249745769 scopus 로고    scopus 로고
    • GAB2 alleles modify Alzheimer's risk in APOE carriers
    • Reiman EM, Webster JA, Myers AJ, et al. GAB2 alleles modify Alzheimer's risk in APOE carriers. Neuron. 2007;54:713-20.
    • (2007) Neuron , vol.54 , pp. 713-720
    • Reiman, E.M.1    Webster, J.A.2    Myers, A.J.3
  • 41
    • 0038708809 scopus 로고    scopus 로고
    • Multivariate imputation by chained equations: MICE V1.0 User's manual
    • PG/VGZ/00.038
    • van Buuren S, Oudshoorn K. Multivariate imputation by chained equations: MICE V1.0 User's manual. TNO Prevention and Health 2000; PG/VGZ/00.038.
    • (2000) TNO Prevention and Health
    • van Buuren, S.1    Oudshoorn, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.