-
1
-
-
84902535538
-
The centrality of mitochondria in the pathogenesis and treatment of Parkinson’s disease
-
Camilleri A and Vassallo N. The centrality of mitochondria in the pathogenesis and treatment of Parkinson’s disease. CNS Neurosci Ther 2014; 20: 591-602.
-
(2014)
CNS Neurosci Ther
, vol.20
, pp. 591-602
-
-
Camilleri, A.1
Vassallo, N.2
-
4
-
-
84859250911
-
NADPH oxidase 1-mediated oxidative stress leads to dopamine neuron death in Parkinson’s disease
-
Choi DH, Cristovao AC, Guhathakurta S, Lee J, Joh TH, Beal MF and Kim YS. NADPH oxidase 1-mediated oxidative stress leads to dopamine neuron death in Parkinson’s disease. Antioxid Redox Signal 2012; 16: 1033-1045.
-
(2012)
Antioxid Redox Signal
, vol.16
, pp. 1033-1045
-
-
Choi, D.H.1
Cristovao, A.C.2
Guhathakurta, S.3
Lee, J.4
Joh, T.H.5
Beal, M.F.6
Kim, Y.S.7
-
5
-
-
84900530067
-
Pro-tein kinase D1 (PKD1) phosphorylation promotes dopaminergic neuronal survival during 6-OHDA-induced oxidative stress
-
Asaithambi A, Ay M, Jin H, Gosh A, Anantharam V, Kanthasamy A and Kanthasamy AG. Pro-tein kinase D1 (PKD1) phosphorylation promotes dopaminergic neuronal survival during 6-OHDA-induced oxidative stress. PLoS One 2014; 9: e96947.
-
(2014)
Plos One
, vol.9
-
-
Asaithambi, A.1
Ay, M.2
Jin, H.3
Gosh, A.4
Anantharam, V.5
Kanthasamy, A.6
Kanthasamy, A.G.7
-
6
-
-
84876463910
-
NADPH oxidase and aging drive microglial activation, oxidative stress, and dopaminergic neurodegeneration following systemic LPS administration
-
Qin L, Liu Y, Hong JS and Crews FT. NADPH oxidase and aging drive microglial activation, oxidative stress, and dopaminergic neurodegeneration following systemic LPS administration. Glia 2013; 61: 855-868.
-
(2013)
Glia
, vol.61
, pp. 855-868
-
-
Qin, L.1
Liu, Y.2
Hong, J.S.3
Crews, F.T.4
-
7
-
-
84863682006
-
Kinetic Modeling of the Mitochondrial Energy Meta-bolism of Neuronal Cells: The Impact of Reduced alpha-Ketoglutarate Dehydrogenase Activities on ATP Production and Generation of Reactive Oxygen Species
-
Berndt N, Bulik S and Holzhutter HG. Kinetic Modeling of the Mitochondrial Energy Meta-bolism of Neuronal Cells: The Impact of Reduced alpha-Ketoglutarate Dehydrogenase Activities on ATP Production and Generation of Reactive Oxygen Species. Int J Cell Biol 2012; 2012: 757594.
-
(2012)
Int J Cell Biol
-
-
Berndt, N.1
Bulik, S.2
Holzhutter, H.G.3
-
8
-
-
84884879594
-
Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease
-
Yan MH, Wang X and Zhu X. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic Biol Med 2013; 62: 90-101.
-
(2013)
Free Radic Biol Med
, vol.62
, pp. 90-101
-
-
Yan, M.H.1
Wang, X.2
Zhu, X.3
-
9
-
-
84889860617
-
Oxidative stress, mitochondrial damage and neurodegenerative diseases
-
Guo C, Sun L, Chen X and Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 2013; 8: 2003-2014.
-
(2013)
Neural Regen Res
, vol.8
, pp. 2003-2014
-
-
Guo, C.1
Sun, L.2
Chen, X.3
Zhang, D.4
-
10
-
-
59349094291
-
Polyhydroxylated fullerene derivative C(60)(OH)(24) prevents mitochondrial dysfunction and oxidative damage in an MPP(+) -induced cellular model of Parkinson’s disease
-
Cai X, Jia H, Liu Z, Hou B, Luo C, Feng Z, Li W and Liu J. Polyhydroxylated fullerene derivative C(60)(OH)(24) prevents mitochondrial dysfunction and oxidative damage in an MPP(+) -induced cellular model of Parkinson’s disease. J Neurosci Res 2008; 86: 3622-3634.
-
(2008)
J Neurosci Res
, vol.86
, pp. 3622-3634
-
-
Cai, X.1
Jia, H.2
Liu, Z.3
Hou, B.4
Luo, C.5
Feng, Z.6
Li, W.7
Liu, J.8
-
11
-
-
0038389668
-
Mitochondrial mechanisms of neural cell death and neuroprotective interventions in Parkinson’s disease
-
Fiskum G, Starkov A, Polster BM and Chino-poulos C. Mitochondrial mechanisms of neural cell death and neuroprotective interventions in Parkinson’s disease. Ann N Y Acad Sci 2003; 991: 111-119.
-
(2003)
Ann N Y Acad Sci
, vol.991
, pp. 111-119
-
-
Fiskum, G.1
Starkov, A.2
Polster, B.M.3
Chino-Poulos, C.4
-
12
-
-
0141741347
-
Parkinson’s disease: Mechanisms and models
-
Dauer W and Przedborski S. Parkinson’s disease: mechanisms and models. Neuron 2003; 39: 889-909.
-
(2003)
Neuron
, vol.39
, pp. 889-909
-
-
Dauer, W.1
Przedborski, S.2
-
13
-
-
58349099832
-
Functional models of Parkinson’s disease: A valuable tool in the development of novel therapies
-
Jenner P. Functional models of Parkinson’s disease: a valuable tool in the development of novel therapies. Ann Neurol 2008; 64 2: S16-S29.
-
(2008)
Ann Neurol
, vol.64
, Issue.2
, pp. S16-S29
-
-
Jenner, P.1
-
14
-
-
0001496694
-
A primate model of parkinsonism: Selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
-
Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM and Kopin IJ. A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci U S A 1983; 80: 4546-4550.
-
(1983)
Proc Natl Acad Sci U S A
, vol.80
, pp. 4546-4550
-
-
Burns, R.S.1
Chiueh, C.C.2
Markey, S.P.3
Ebert, M.H.4
Jacobowitz, D.M.5
Kopin, I.J.6
-
15
-
-
34250862649
-
Neuro-protective effect of catalpol against MPP(+)-induced oxidative stress in mesencephalic neurons
-
Tian YY, Jiang B, An LJ and Bao YM. Neuro-protective effect of catalpol against MPP(+)-induced oxidative stress in mesencephalic neurons. Eur J Pharmacol 2007; 568: 142-148.
-
(2007)
Eur J Pharmacol
, vol.568
, pp. 142-148
-
-
Tian, Y.Y.1
Jiang, B.2
An, L.J.3
Bao, Y.M.4
-
16
-
-
84905081060
-
Pinocembrin protects SH-SY5Y cells against MPP+-induced neurotoxicity through the mitochondrial apoptotic pathway
-
Wang Y, Gao J, Miao Y, Cui Q, Zhao W, Zhang J and Wang H. Pinocembrin protects SH-SY5Y cells against MPP+-induced neurotoxicity through the mitochondrial apoptotic pathway. J Mol Neurosci 2014; 53: 537-545.
-
(2014)
J Mol Neurosci
, vol.53
, pp. 537-545
-
-
Wang, Y.1
Gao, J.2
Miao, Y.3
Cui, Q.4
Zhao, W.5
Zhang, J.6
Wang, H.7
-
17
-
-
80055015421
-
Ceruloplasmin protects against rotenone-induced oxidative stress and neurotoxicity
-
Hineno A, Kaneko K, Yoshida K and Ikeda S. Ceruloplasmin protects against rotenone-induced oxidative stress and neurotoxicity. Neurochem Res 2011; 36: 2127-2135.
-
(2011)
Neurochem Res
, vol.36
, pp. 2127-2135
-
-
Hineno, A.1
Kaneko, K.2
Yoshida, K.3
Ikeda, S.4
-
18
-
-
67650094606
-
Effect of centrophenoxine against rotenone-induced oxidative stress in an animal model of Parkinson’s disease
-
Verma R and Nehru B. Effect of centrophenoxine against rotenone-induced oxidative stress in an animal model of Parkinson’s disease. Neurochem Int 2009; 55: 369-375.
-
(2009)
Neurochem Int
, vol.55
, pp. 369-375
-
-
Verma, R.1
Nehru, B.2
-
19
-
-
17644384487
-
The effect of endogenous dopamine in rotenone-induced toxicity in PC12 cells
-
Dukes AA, Korwek KM and Hastings TG. The effect of endogenous dopamine in rotenone-induced toxicity in PC12 cells. Antioxid Redox Signal 2005; 7: 630-638.
-
(2005)
Antioxid Redox Signal
, vol.7
, pp. 630-638
-
-
Dukes, A.A.1
Korwek, K.M.2
Hastings, T.G.3
-
20
-
-
84862297475
-
Mechanism of oxidative stress in neurodegeneration
-
Gandhi S and Abramov AY. Mechanism of oxidative stress in neurodegeneration. Oxid Med Cell Longev 2012; 2012: 428010.
-
(2012)
Oxid Med Cell Longev
-
-
Gandhi, S.1
Abramov, A.Y.2
-
21
-
-
78649566651
-
Protective effects of Chunghyuldan against ROS-mediated neuronal cell death in models of Parkinson’s disease
-
Kim HG, Ju MS, Kim DH, Hong J, Cho SH, Cho KH, Park W, Lee EH, Kim SY and Oh MS. Protective effects of Chunghyuldan against ROS-mediated neuronal cell death in models of Parkinson’s disease. Basic Clin Pharmacol Toxicol 2010; 107: 958-964.
-
(2010)
Basic Clin Pharmacol Toxicol
, vol.107
, pp. 958-964
-
-
Kim, H.G.1
Ju, M.S.2
Kim, D.H.3
Hong, J.4
Cho, S.H.5
Cho, K.H.6
Park, W.7
Lee, E.H.8
Kim, S.Y.9
Oh, M.S.10
-
22
-
-
84901321275
-
Oxidative stress-induced signaling pathways implicated in the pathogenesis of Parkinson’s disease
-
Gaki GS and Papavassiliou AG. Oxidative stress-induced signaling pathways implicated in the pathogenesis of Parkinson’s disease. Neuromolecular Med 2014; 16: 217-230.
-
(2014)
Neuromolecular Med
, vol.16
, pp. 217-230
-
-
Gaki, G.S.1
Papavassiliou, A.G.2
-
23
-
-
84905659019
-
Suppression of inflammatory and allergic responses by pharmacologically potent fungus Ganoderma lucidum
-
Bhardwaj N, Katyal P and Sharma AK. Suppression of inflammatory and allergic responses by pharmacologically potent fungus Ganoderma lucidum. Recent Pat Inflamm Allergy Drug Discov 2014; 8: 104-117.
-
(2014)
Recent Pat Inflamm Allergy Drug Discov
, vol.8
, pp. 104-117
-
-
Bhardwaj, N.1
Katyal, P.2
Sharma, A.K.3
-
24
-
-
84874560890
-
Anti-tumor effects of Ganoderma lucidum (Reishi) in inflammatory breast cancer in in vivo and in vitro models
-
Suarez-Arroyo IJ, Rosario-Acevedo R, Aguilar-Perez A, Clemente PL, Cubano LA, Serrano J, Schneider RJ and Martinez-Montemayor MM. Anti-tumor effects of Ganoderma lucidum (reishi) in inflammatory breast cancer in in vivo and in vitro models. PLoS One 2013; 8: e57431.
-
(2013)
Plos One
, vol.8
-
-
Suarez-Arroyo, I.J.1
Rosario-Acevedo, R.2
Aguilar-Perez, A.3
Clemente, P.L.4
Cubano, L.A.5
Serrano, J.6
Schneider, R.J.7
Martinez-Montemayor, M.M.8
-
25
-
-
84902176969
-
Antiviral effects of two Ganoderma lucidum triterpenoids against enterovirus 71 infection
-
Zhang W, Tao J, Yang X, Yang Z, Zhang L, Liu H, Wu K and Wu J. Antiviral effects of two Ganoderma lucidum triterpenoids against enterovirus 71 infection. Biochem Biophys Res Commun 2014; 449: 307-312.
-
(2014)
Biochem Biophys Res Commun
, vol.449
, pp. 307-312
-
-
Zhang, W.1
Tao, J.2
Yang, X.3
Yang, Z.4
Zhang, L.5
Liu, H.6
Wu, K.7
Wu, J.8
-
26
-
-
80052768762
-
Ganoderma lucidum Protects Dopaminergic Neuron Degeneration through Inhibition of Microglial Activation
-
Zhang R, Xu S, Cai Y, Zhou M, Zuo X and Chan P. Ganoderma lucidum Protects Dopaminergic Neuron Degeneration through Inhibition of Microglial Activation. Evid Based Complement Alternat Med 2011; 2011: 156810.
-
(2011)
Evid Based Complement Alternat Med
-
-
Zhang, R.1
Xu, S.2
Cai, Y.3
Zhou, M.4
Zuo, X.5
Chan, P.6
-
27
-
-
84932105197
-
Comparison of antioxidant and antiproliferation activities of polysaccharides from eight species of medicinal mushrooms
-
Chen P, Yong Y, Gu Y, Wang Z, Zhang S and Lu L. Comparison of antioxidant and antiproliferation activities of polysaccharides from eight species of medicinal mushrooms. Int J Med Mushrooms 2015; 17: 287-295.
-
(2015)
Int J Med Mushrooms
, vol.17
, pp. 287-295
-
-
Chen, P.1
Yong, Y.2
Gu, Y.3
Wang, Z.4
Zhang, S.5
Lu, L.6
-
30
-
-
0030586361
-
The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay
-
Benzie IF and Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 1996; 239: 70-76.
-
(1996)
Anal Biochem
, vol.239
, pp. 70-76
-
-
Benzie, I.F.1
Strain, J.J.2
-
31
-
-
84980052291
-
Ginsenoside Rd and ginsenoside Re offer neuroprotectionin a novel model of Parkinson’s disease
-
Zhang X, Wang Y, Ma C, Yan Y, Yang Y, Wang X, Rausch WD. Ginsenoside Rd and ginsenoside Re offer neuroprotectionin a novel model of Parkinson’s disease. Am J Neurodegener Dis 2016; 5: 52-61.
-
(2016)
Am J Neurodegener Dis
, vol.5
, pp. 52-61
-
-
Zhang, X.1
Wang, Y.2
Ma, C.3
Yan, Y.4
Yang, Y.5
Wang, X.6
Rausch, W.D.7
-
33
-
-
0025640845
-
Anatomic and disease specificity of NADH CoQ1 reductase (Complex I) deficiency in Parkinson’s disease
-
Schapira AH, Mann VM, Cooper JM, Dexter D, Daniel SE, Jenner P, Clark JB and Marsden CD. Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 1990; 55: 2142-2145.
-
(1990)
J Neurochem
, vol.55
, pp. 2142-2145
-
-
Schapira, A.H.1
Mann, V.M.2
Cooper, J.M.3
Dexter, D.4
Daniel, S.E.5
Jenner, P.6
Clark, J.B.7
Marsden, C.D.8
-
34
-
-
0036343615
-
Nuclear apoptosis detection by flow cytometry: Influence of endogenous endonucleases
-
Lecoeur H. Nuclear apoptosis detection by flow cytometry: influence of endogenous endonucleases. Exp Cell Res 2002; 277: 1-14.
-
(2002)
Exp Cell Res
, vol.277
, pp. 1-14
-
-
Lecoeur, H.1
-
35
-
-
84883180845
-
Role of oxidative stress in Parkinson’s disease
-
Hwang O. Role of oxidative stress in Parkinson’s disease. Exp Neurobiol 2013; 22: 11-17.
-
(2013)
Exp Neurobiol
, vol.22
, pp. 11-17
-
-
Hwang, O.1
-
36
-
-
84940460831
-
Transcranial Direct Current Stimulation Ameliorates Behavioral Deficits and Reduces Oxidative Stress in 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Mouse Model of Parkinson’s Disease
-
Lu C, Wei Y, Hu R, Wang Y, Li K and Li X. Transcranial Direct Current Stimulation Ameliorates Behavioral Deficits and Reduces Oxidative Stress in 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Mouse Model of Parkinson’s Disease. Neuromodulation 2015; 18: 442-6.
-
(2015)
Neuromodulation
, vol.18
, pp. 442-446
-
-
Lu, C.1
Wei, Y.2
Hu, R.3
Wang, Y.4
Li, K.5
Li, X.6
-
37
-
-
77958114712
-
Some current insights into oxidative stress
-
Durackova Z. Some current insights into oxidative stress. Physiol Res 2010; 59: 459-469.
-
(2010)
Physiol Res
, vol.59
, pp. 459-469
-
-
Durackova, Z.1
-
38
-
-
84910123251
-
Neuroprotection by 6-(Methylsulfinyl)hexyl isothiocyanate in a 6-hydroxydopamine mouse model of Parkinsons disease
-
Morroni F, Sita G, Tarozzi A, Cantelli-Forti G and Hrelia P. Neuroprotection by 6-(methylsulfinyl)hexyl isothiocyanate in a 6-hydroxydopamine mouse model of Parkinsons disease. Brain Res 2014; 1589: 93-104.
-
(2014)
Brain Res
, vol.1589
, pp. 93-104
-
-
Morroni, F.1
Sita, G.2
Tarozzi, A.3
Cantelli-Forti, G.4
Hrelia, P.5
-
41
-
-
33749999764
-
Study on the ability of 1,2,3,4-tetrahydropapaveroline to cause oxidative stress: Mechanisms and potential implications in relation to parkinson’s disease
-
Soto-Otero R, Sanmartin-Suarez C, Sanchez-Iglesias S, Hermida-Ameijeiras A, Sanchez-Sellero I and Mendez-Alvarez E. Study on the ability of 1,2,3,4-tetrahydropapaveroline to cause oxidative stress: Mechanisms and potential implications in relation to parkinson’s disease. J Biochem Mol Toxicol 2006; 20: 209-220.
-
(2006)
J Biochem Mol Toxicol
, vol.20
, pp. 209-220
-
-
Soto-Otero, R.1
Sanmartin-Suarez, C.2
Sanchez-Iglesias, S.3
Hermida-Ameijeiras, A.4
Sanchez-Sellero, I.5
Mendez-Alvarez, E.6
-
43
-
-
84875078985
-
Antioxidant and immunoregulatory activity of Ganoderma lucidum polysaccharide (GLP)
-
Shi M, Zhang Z and Yang Y. Antioxidant and immunoregulatory activity of Ganoderma lucidum polysaccharide (GLP). Carbohydr Polym 2013; 95: 200-206.
-
(2013)
Carbohydr Polym
, vol.95
, pp. 200-206
-
-
Shi, M.1
Zhang, Z.2
Yang, Y.3
-
44
-
-
84921976374
-
Anti-inflammatory and hepatoprotective effects of Ganoderma lucidum polysaccharides on carbon tetrachloride-induced hepatocyte damage in common carp (Cyprinus carpio L.)
-
Liu YJ, Du JL, Cao LP, Jia R, Shen YJ, Zhao CY, Xu P and Yin GJ. Anti-inflammatory and hepatoprotective effects of Ganoderma lucidum polysaccharides on carbon tetrachloride-induced hepatocyte damage in common carp (Cyprinus carpio L.). Int Immunopharmacol 2015; 25: 112-120.
-
(2015)
Int Immunopharmacol
, vol.25
, pp. 112-120
-
-
Liu, Y.J.1
Du, J.L.2
Cao, L.P.3
Jia, R.4
Shen, Y.J.5
Zhao, C.Y.6
Xu, P.7
Yin, G.J.8
-
45
-
-
34547762666
-
Chinese herbs and herbal extracts for neuroprotection of dopaminergic neurons and potential therapeutic treatment of Parkinson’s disease
-
Chen LW, Wang YQ, Wei LC, Shi M and Chan YS. Chinese herbs and herbal extracts for neuroprotection of dopaminergic neurons and potential therapeutic treatment of Parkinson’s disease. CNS Neurol Disord Drug Targets 2007; 6: 273-281.
-
(2007)
CNS Neurol Disord Drug Targets
, vol.6
, pp. 273-281
-
-
Chen, L.W.1
Wang, Y.Q.2
Wei, L.C.3
Shi, M.4
Chan, Y.S.5
-
46
-
-
84873137660
-
Ganoderma lucidum extract protects dopaminergic neurons through inhibiting the production of inflammatory mediators by activated microglia
-
Ding H, Zhou M, Zhang RP and Xu SL. Ganoderma lucidum extract protects dopaminergic neurons through inhibiting the production of inflammatory mediators by activated microglia.. Sheng Li Xue Bao 2010; 62: 547-554.
-
(2010)
Sheng Li Xue Bao
, vol.62
, pp. 547-554
-
-
Ding, H.1
Zhou, M.2
Zhang, R.P.3
Xu, S.L.4
-
47
-
-
84933564727
-
Ginsenoside Rd Protects SH-SY5Y Cells against 1-Methyl-4-phenylpyri-dinium Induced Injury
-
Liu Y, Zhang RY, Zhao J, Dong Z, Feng DY, Wu R, Shi M and Zhao G. Ginsenoside Rd Protects SH-SY5Y Cells against 1-Methyl-4-phenylpyri-dinium Induced Injury. Int J Mol Sci 2015; 16: 14395-14408.
-
(2015)
Int J Mol Sci
, vol.16
, pp. 14395-14408
-
-
Liu, Y.1
Zhang, R.Y.2
Zhao, J.3
Dong, Z.4
Feng, D.Y.5
Wu, R.6
Shi, M.7
Zhao, G.8
-
48
-
-
84898058992
-
The Chinese herbal formula Liuwei dihuang protects dopaminergic neurons against Parkinson’s toxin through enhancing antioxidative defense and preventing apoptotic death
-
Tseng YT, Chang FR and Lo YC. The Chinese herbal formula Liuwei dihuang protects dopaminergic neurons against Parkinson’s toxin through enhancing antioxidative defense and preventing apoptotic death. Phytomedicine 2014; 21: 724-733.
-
(2014)
Phytomedicine
, vol.21
, pp. 724-733
-
-
Tseng, Y.T.1
Chang, F.R.2
Lo, Y.C.3
-
49
-
-
84884486241
-
Neuroprotective effects of madecassoside in early stage of Parkinson’s disease induced by MPTP in rats
-
Xu CL, Qu R, Zhang J, Li LF and Ma SP. Neuroprotective effects of madecassoside in early stage of Parkinson’s disease induced by MPTP in rats. Fitoterapia 2013; 90: 112-118.
-
(2013)
Fitoterapia
, vol.90
, pp. 112-118
-
-
Xu, C.L.1
Qu, R.2
Zhang, J.3
Li, L.F.4
Ma, S.P.5
-
50
-
-
67349280174
-
Proteomic identification of dopamine-conjugated proteins from isolated rat brain mitochondria and SH-SY5Y cells
-
Van Laar VS, Mishizen AJ, Cascio M and Hastings TG. Proteomic identification of dopamine-conjugated proteins from isolated rat brain mitochondria and SH-SY5Y cells. Neuro-biol Dis 2009; 34: 487-500.
-
(2009)
Neuro-Biol Dis
, vol.34
, pp. 487-500
-
-
Van Laar, V.S.1
Mishizen, A.J.2
Cascio, M.3
Hastings, T.G.4
-
51
-
-
84925871294
-
Mitochondrial biogenesis: Pharmacological approaches
-
Valero T. Mitochondrial biogenesis: pharmacological approaches. Curr Pharm Des 2014; 20: 5507-5509.
-
(2014)
Curr Pharm Des
, vol.20
, pp. 5507-5509
-
-
Valero, T.1
-
52
-
-
84895511663
-
Neuroprotective effects of anthocyanin- and proanthocyanidin-rich extracts in cellular models of Parkinsons disease
-
Strathearn KE, Yousef GG, Grace MH, Roy SL, Tambe MA, Ferruzzi MG, Wu QL, Simon JE, Lila MA and Rochet JC. Neuroprotective effects of anthocyanin- and proanthocyanidin-rich extracts in cellular models of Parkinsons disease. Brain Res 2014; 1555: 60-77.
-
(2014)
Brain Res
, vol.1555
, pp. 60-77
-
-
Strathearn, K.E.1
Yousef, G.G.2
Grace, M.H.3
Roy, S.L.4
Tambe, M.A.5
Ferruzzi, M.G.6
Wu, Q.L.7
Simon, J.E.8
Lila, M.A.9
Rochet, J.C.10
-
53
-
-
2442481789
-
Mitochondrial dysfunction and oxidative damage in parkin-deficient mice
-
Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C, Wacker M, Klose J and Shen J. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 2004; 279: 18614-18622.
-
(2004)
J Biol Chem
, vol.279
, pp. 18614-18622
-
-
Palacino, J.J.1
Sagi, D.2
Goldberg, M.S.3
Krauss, S.4
Motz, C.5
Wacker, M.6
Klose, J.7
Shen, J.8
-
54
-
-
79955057180
-
The Nrf2/ARE Pathway: A Promising Target to Counteract Mitochondrial Dysfunction in Parkinson’s Disease
-
Tufekci KU, Civi Bayin E, Genc S and Genc K. The Nrf2/ARE Pathway: A Promising Target to Counteract Mitochondrial Dysfunction in Parkinson’s Disease. Parkinsons Dis 2011; 2011: 314082.
-
(2011)
Parkinsons Dis
-
-
Tufekci, K.U.1
Civi Bayin, E.2
Genc, S.3
Genc, K.4
-
55
-
-
58149102066
-
The disulfide relay system of mitochondria is required for the biogenesis of mitochondrial Ccs1 and Sod1
-
Reddehase S, Grumbt B, Neupert W and Hell K. The disulfide relay system of mitochondria is required for the biogenesis of mitochondrial Ccs1 and Sod1. J Mol Biol 2009; 385: 331-338.
-
(2009)
J Mol Biol
, vol.385
, pp. 331-338
-
-
Reddehase, S.1
Grumbt, B.2
Neupert, W.3
Hell, K.4
-
56
-
-
68649108355
-
Mitochondrial dysfunction in the limelight of Parkinson’s disease pathogenesis
-
Banerjee R, Starkov AA, Beal MF and Thomas B. Mitochondrial dysfunction in the limelight of Parkinson’s disease pathogenesis. Biochim Biophys Acta 2009; 1792: 651-663.
-
(2009)
Biochim Biophys Acta
, vol.1792
, pp. 651-663
-
-
Banerjee, R.1
Starkov, A.A.2
Beal, M.F.3
Thomas, B.4
-
57
-
-
71849084134
-
Mitochondrial dysfunction in Parkinson’s disease
-
Winklhofer KF and Haass C. Mitochondrial dysfunction in Parkinson’s disease. Biochim Biophys Acta 2010; 1802: 29-44.
-
(2010)
Biochim Biophys Acta
, vol.1802
, pp. 29-44
-
-
Winklhofer, K.F.1
Haass, C.2
-
58
-
-
84878302230
-
Secalonic acid A protects dopaminergic neurons from 1-methyl-4-phenylpyridinium (MPP(+))-induced cell death via the mitochondrial apoptotic pathway
-
Zhai A, Zhu X, Wang X, Chen R and Wang H. Secalonic acid A protects dopaminergic neurons from 1-methyl-4-phenylpyridinium (MPP(+))-induced cell death via the mitochondrial apoptotic pathway. Eur J Pharmacol 2013; 713: 58-67.
-
(2013)
Eur J Pharmacol
, vol.713
, pp. 58-67
-
-
Zhai, A.1
Zhu, X.2
Wang, X.3
Chen, R.4
Wang, H.5
-
59
-
-
33746326513
-
Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration
-
Radad K, Rausch WD and Gille G. Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration. Neurochem Int 2006; 49: 379-386.
-
(2006)
Neurochem Int
, vol.49
, pp. 379-386
-
-
Radad, K.1
Rausch, W.D.2
Gille, G.3
-
60
-
-
84930000141
-
Lutein protects dopaminergic neurons against MPTP-induced apoptotic death and motor dysfunction by ameliorating mitochondrial disruption and oxidative stress
-
Epub ahead of print
-
Nataraj J, Manivasagam T, Justin Thenmozhi A and Essa MM. Lutein protects dopaminergic neurons against MPTP-induced apoptotic death and motor dysfunction by ameliorating mitochondrial disruption and oxidative stress. Nutr Neurosci 2015; Epub ahead of print..
-
(2015)
Nutr Neurosci
-
-
Nataraj, J.1
Manivasagam, T.2
Justin Thenmozhi, A.3
Essa, M.M.4
-
61
-
-
29644447278
-
Rotenone model of Parkinson disease: Multiple brain mitochondria dysfunctions after short term systemic rotenone intoxication
-
Panov A, Dikalov S, Shalbuyeva N, Taylor G, Sherer T and Greenamyre JT. Rotenone model of Parkinson disease: multiple brain mitochondria dysfunctions after short term systemic rotenone intoxication. J Biol Chem 2005; 280: 42026-42035.
-
(2005)
J Biol Chem
, vol.280
, pp. 42026-42035
-
-
Panov, A.1
Dikalov, S.2
Shalbuyeva, N.3
Taylor, G.4
Sherer, T.5
Greenamyre, J.T.6
-
62
-
-
84909988468
-
Silibinin activates AMP-activated protein kinase to protect neuronal cells from oxygen and glucose deprivation-re-oxygenation
-
Xie Z, Ding SQ and Shen YF. Silibinin activates AMP-activated protein kinase to protect neuronal cells from oxygen and glucose deprivation-re-oxygenation. Biochem Biophys Res Commun 2014; 454: 313-319.
-
(2014)
Biochem Biophys Res Commun
, vol.454
, pp. 313-319
-
-
Xie, Z.1
Ding, S.Q.2
Shen, Y.F.3
|