메뉴 건너뛰기




Volumn 9, Issue JAN2016, 2016, Pages

Models of innate neural attractors and their applications for neural information processing

Author keywords

Bump attractor; Cortical; Hopfield networks; Innate connections; Neural networks; Self organizing mapping

Indexed keywords

MOLECULAR MARKER;

EID: 84958527078     PISSN: 16625137     EISSN: None     Source Type: Journal    
DOI: 10.3389/fnsys.2015.00178     Document Type: Article
Times cited : (11)

References (39)
  • 1
    • 0017713690 scopus 로고
    • Dynamics of pattern formation in lateral-inhibition type neuralfields
    • Amari, S. I. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields. Bio. Cyber. 27, 77-87. doi: 10.1007/BF00337259.
    • (1977) Bio. Cyber , vol.27 , pp. 77-87
    • Amari, S.I.1
  • 2
    • 0014683617 scopus 로고
    • Nerve net models of plausible size that perform manysimple learning tasks
    • Brindley, G. S. (1969). Nerve net models of plausible size that perform many simple learning tasks. Proc. R. Soc. Lond. Biol. Sci. B 174, 173-191. doi: 10.1098/rspb.1969.0087.
    • (1969) Proc. R. Soc. Lond. Biol. Sci. B , vol.174 , pp. 173-191
    • Brindley, G.S.1
  • 4
    • 84969415400 scopus 로고
    • Multineuronal structures: Theory and experiment.Phys
    • Dunin-Barkowski, V. L. (1986). Multineuronal structures: theory and experiment. Phys. Usp. 29, 985-986. doi: 10.1070/PU1986v029n10ABEH003533.
    • (1986) Usp , vol.29 , pp. 985-986
    • Dunin-Barkowski, V.L.1
  • 5
    • 18244422364 scopus 로고
    • Somepropertiesofagroupofneurons,working in parallel. I. Neuron pool without interconnections
    • Dunin-Barkowski, W. L. (1971a). Some properties of a group of neurons, working in parallel. I. Neuron pool without interconnections. Biofizika 16, 520-526.
    • (1971) Biofizika , vol.16 , pp. 520-526
    • Dunin-Barkowski, W.L.1
  • 6
    • 0037496528 scopus 로고
    • Some properties of a group of neurons, workingin parallel. II. A role-played by excitatory and inhibitory interconnections
    • Dunin-Barkowski, W. L. (1971b). Some properties of a group of neurons, working in parallel. II. A role-played by excitatory and inhibitory interconnections. Biofizika 16, 698-704.
    • (1971) Biofizika , vol.16 , pp. 698-704
    • Dunin-Barkowski, W.L.1
  • 7
    • 0021685163 scopus 로고
    • Patternedneuraloscillators
    • Dunin-Barkowski, W. L. (1984). Patterned neural oscillators. Biofizika 29, 899-902.
    • (1984) Biofizika , vol.29 , pp. 899-902
    • Dunin-Barkowski, W.L.1
  • 10
    • 79953678689 scopus 로고    scopus 로고
    • Prognosis of dynamical systems behavior based on cerebellar type neuraltechnologies
    • Dunin-Barkowski, W. L., Flerov, Y. A., and Vyshinsky, L. L. (2011). Prognosis of dynamical systems behavior based on cerebellar type neural technologies. Opt. Mem. Neural Netw. 20, 43-58. doi: 10.3103/S1060992X 11010073.
    • (2011) Opt. Mem. Neural Netw , vol.20 , pp. 43-58
    • Dunin-Barkowski, W.L.1    Flerov, Y.A.2    Vyshinsky, L.L.3
  • 11
    • 78649469093 scopus 로고    scopus 로고
    • L-plotting: A method for visual analysis of physiologicalexperimentalandmodelingmulti-componentdata
    • Dunin-Barkowski, W. L., Lovering, A. T., Orem, J. M., Baekey, D. M., Dick, T. E., Rybak, M., et al. (2010). L-plotting: a method for visual analysis of physiological experimental and modeling multi-component data. Neurocomputing 74, 328-336. doi: 10.1016/j.neucom.2010.03.015.
    • (2010) Neurocomputing , vol.74 , pp. 328-336
    • Dunin-Barkowski, W.L.1    Lovering, A.T.2    Orem, J.M.3    Baekey, D.M.4    Dick, T.E.5    Rybak, M.6
  • 12
    • 0343275481 scopus 로고
    • Hebb-Hopfield neuralnetworks based on one-dimensional sets of neurons states
    • Dunin-Barkowski, W. L., and Osovets, N. B. (1995). Hebb-Hopfield neural networks based on one-dimensional sets of neurons states. Neural Process. Lett. 2, 28-31. doi: 10.1007/BF02332163.
    • (1995) Neural Process. Lett , vol.2 , pp. 28-31
    • Dunin-Barkowski, W.L.1    Osovets, N.B.2
  • 13
    • 33947142057 scopus 로고    scopus 로고
    • Hippocampal remapping and grid realignment in entorhinal cortex
    • Fyhn, M., Hafting, T., Treves, A., Moser, M. B., and Moser, E. I. (2007). Hippocampal remapping and grid realignment in entorhinal cortex. Nature 446, 190-194. doi: 10.1038/nature05601.
    • (2007) Nature , vol.446 , pp. 190-194
    • Fyhn, M.1    Hafting, T.2    Treves, A.3    Moser, M.B.4    Moser, E.I.5
  • 14
    • 36149029786 scopus 로고
    • The space of interactions in neural network models
    • Gardner, E. (1988). The space of interactions in neural network models. J. Phys. A Math. Gen. 21, 257. doi: 10.1088/0305-4470/21/1/030.
    • (1988) J. Phys. Amath. Gen , vol.21 , pp. 257
    • Gardner, E.1
  • 15
    • 84906921434 scopus 로고    scopus 로고
    • Coordinated learning of grid cell and placecell spatial and temporal properties: Multiple scales, attention and oscillations
    • Grossberg, S., and Pilly, P. K. (2014). Coordinated learning of grid cell and place cell spatial and temporal properties: multiple scales, attention and oscillations. Philos. Trans. R. Soc. B Biol. Sci. 369:20120524. doi: 10.1098/rstb.2012.0524.
    • (2014) Philos. Trans. R. Soc. B Biol. Sci , vol.20 , pp. 369
    • Grossberg, S.1    Pilly, P.K.2
  • 16
    • 84887335887 scopus 로고    scopus 로고
    • Cortical connectivity and sensory coding
    • Harris, K. D., and Mrsic, T. D. (2013). Cortical connectivity and sensory coding. Nature 303, 51-58. doi: 10.1038/nature12654.
    • (2013) Nature , vol.303 , pp. 51-58
    • Harris, K.D.1    Mrsic, T.D.2
  • 18
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergentcollective computational abilities
    • Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79, 2554-2558. doi: 10.1073/pnas.79.8.2554.
    • (1982) Proc. Natl. Acad. Sci. U.S.A. , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 19
    • 76549106865 scopus 로고    scopus 로고
    • Neurodynamics of mental exploration
    • Hopfield, J. J. (2010). Neurodynamics of mental exploration. Proc. Natl. Acad. Sci. U.S.A. 107, 1648-1653. doi: 10.1073/pnas.0913991107.
    • (2010) Proc. Natl. Acad. Sci.U.S.A. , vol.107 , pp. 1648-1653
    • Hopfield, J.J.1
  • 20
    • 21244487876 scopus 로고    scopus 로고
    • Thecorticalcolumn:Astructurewithout a function
    • Horton, J. C., and Adams, D. L. (2005). The cortical column: a structure without a function. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 837-862. doi:10.1098/rstb.2005.1623.
    • (2005) Philos. Trans. R. Soc. Lond. B Biol. Sci , vol.360 , pp. 837-862
    • Horton, J.C.1    Adams, D.L.2
  • 23
    • 84860176118 scopus 로고    scopus 로고
    • Attractor dynamics of spatially correlatedneural activity in the limbic system
    • Knierim, J. J., and Zhang, K. (2012). Attractor dynamics of spatially correlated neural activity in the limbic system. Annu. Rev. Neurosci. 35, 267-285. doi:10.1146/annurev-neuro-062111-150351.
    • (2012) Annu. Rev. Neurosci , vol.35 , pp. 267-285
    • Knierim, J.J.1    Zhang, K.2
  • 24
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct featuremaps. Biol
    • Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biol. Cyber. 43, 59-69. doi: 10.1007/BF00337288.
    • (1982) Cyber , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 25
    • 0014526073 scopus 로고
    • A theory of cerebellar cortex
    • Marr, D. (1969). A theory of cerebellar cortex. J. Physiol. 202, 437-470. doi: 10.1113/jphysiol.1969.sp008820.
    • (1969) J. Physiol , vol.202 , pp. 437-470
    • Marr, D.1
  • 26
    • 0015083717 scopus 로고
    • Simple memory: A theory for archicortex
    • Marr, D. (1971). Simple memory: a theory for archicortex. Philos. Trans. R. Soc. 262, 23-81. doi: 10.1098/rstb.1971.0078.
    • (1971) Philos. Trans. R. Soc , vol.262 , pp. 23-81
    • Marr, D.1
  • 27
    • 84870784136 scopus 로고    scopus 로고
    • Staining and embedding the wholemouse brain for electron microscopy
    • Mikula, S., Binding, J., and Denk, W. (2012). Staining and embedding the whole mouse brain for electron microscopy. Nat. Methods 9, 1198-1201. doi: 10.1038/nmeth.2213.
    • (2012) Nat. Methods , vol.9 , pp. 1198-1201
    • Mikula, S.1    Binding, J.2    Denk, W.3
  • 29
    • 79955101961 scopus 로고    scopus 로고
    • Synaptic organizing principlefor cortical neuronal groups
    • Perin, R., Berger, T. K., and Markram, H. A. (2011). Synaptic organizing principle for cortical neuronal groups. Proc. Natl. Acad. Sci. U.S.A. 108, 5419-5424. doi:10.1073/pnas.1016051108.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 5419-5424
    • Perin, R.1    Berger, T.K.2    Markram, H.A.3
  • 30
    • 84872540737 scopus 로고    scopus 로고
    • Brain cells for grandmother
    • Quiroga, R. Q., Fried, I., and Koch, C. (2013). Brain cells for grandmother. Sci. Am. 308, 30-35. doi: 10.1038/scientificamerican0213-30.
    • (2013) Sci. Am , vol.308 , pp. 30-35
    • Quiroga, R.Q.1    Fried, I.2    Koch, C.3
  • 31
    • 78049443115 scopus 로고    scopus 로고
    • Continuousattractorswithmorphed/correlatedmaps.PLoSComput.Biol.6:E1000869
    • Romani, S., and Tsodyks, M. (2010). Continuous attractors with morphed/correlated maps. PLoS Comput. Biol. 6:e1000869. doi: 10.1371/ journal.pcbi.1000869.
    • (2010) Sci. Am
    • Romani, S.1    Tsodyks, M.2
  • 32
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for informationstorageandorganizationinthebrain
    • Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386. doi:10.1037/h0042519.
    • (1958) Psychol.Rev , vol.65 , pp. 386
    • Rosenblatt, F.1
  • 33
    • 84958556230 scopus 로고    scopus 로고
    • Scholaropedia.Availableonlineat
    • Samsonovich, A. V. (2014). Continuous Attractor Network. Scholaropedia. Available online at: www.scholaropedia.org/article/Continuous_attractor_network.
    • (2014) Continuousattractornetwork
    • Samsonovich, A.V.1
  • 34
    • 84885352008 scopus 로고    scopus 로고
    • Self-organizing maps of sensory signals to continuousneural network attractors
    • Availableonline at
    • Solovyeva, K. P. (2013). Self-organizing maps of sensory signals to continuous neural network attractors. Math. Biol. Bioinformatics 8, 234-247. Available online at: http://www.matbio.org/2013/Solovyeva_8_234.pdf.
    • (2013) Math. Biol. Bioinformatics , vol.8 , pp. 234-247
    • Solovyeva, K.P.1
  • 36
    • 0022042950 scopus 로고
    • Reverse engineering the brain
    • Stevens, J. K. (1985). Reverse engineering the brain. Byte 10, 287-299.
    • (1985) Byte , vol.10 , pp. 287-299
    • Stevens, J.K.1
  • 37
    • 0041328717 scopus 로고    scopus 로고
    • Self-organizing continuous attractor networks and path integration: Two-dimensional models of place cells
    • Stringer, S. M., Rolls, E. T., Trappenberg, T. P., and de Araujo, I. E. T. (2002). Self-organizing continuous attractor networks and path integration: two- dimensional models of place cells. Netw. Comput. Neural Syst. 13, 429-446. doi:10.1088/0954-898X_13_4_301.
    • (2002) Netw. Comput. Neural Syst , vol.13 , pp. 429-446
    • Stringer, S.M.1    Rolls, E.T.2    Trappenberg, T.P.3    De Araujo, I.E.T.4
  • 38
    • 84956515648 scopus 로고
    • The mathematical formulation of theproblem of conduction of impulses in a network of connected excitableelements,specificallyincardiacmuscle
    • Wiener, N., and Rosenblueth, A. (1946). The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch. Inst. Cardiol. Méx. 16, 205-265.
    • (1946) Arch.Inst.Cardiol.Méx , vol.16 , pp. 205-265
    • Wiener, N.1    Rosenblueth, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.