-
1
-
-
0037213338
-
Triacylglycerols in prokaryotic microorganisms
-
Alvarez, H. M., and Steinbüchel, A. (2002). Triacylglycerols in prokaryotic microorganisms. Appl. Microbiol. Biotechnol. 60, 367-376. doi: 10.1007/s00253-002-1135-0
-
(2002)
Appl. Microbiol. Biotechnol
, vol.60
, pp. 367-376
-
-
Alvarez, H.M.1
Steinbüchel, A.2
-
2
-
-
84920434932
-
Steatosis-induced proteins adducts with lipid peroxidation products and nuclear electrophilic stress in hepatocytes
-
Anavi, S., Ni, Z., Tirosh, O., and Fedorova, M. (2015). Steatosis-induced proteins adducts with lipid peroxidation products and nuclear electrophilic stress in hepatocytes. Redox Biol. 4, 158-168. doi: 10.1016/j.redox.2014.12.009
-
(2015)
Redox Biol
, vol.4
, pp. 158-168
-
-
Anavi, S.1
Ni, Z.2
Tirosh, O.3
Fedorova, M.4
-
3
-
-
0032693609
-
Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae
-
Athenstaedt, K., Zweytick, D., Jandrositz, A., Kohlwein, S. D., and Daum, G. (1999). Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae. J. Bacteriol. 181, 6441-6448
-
(1999)
J. Bacteriol
, vol.181
, pp. 6441-6448
-
-
Athenstaedt, K.1
Zweytick, D.2
Jandrositz, A.3
Kohlwein, S.D.4
Daum, G.5
-
4
-
-
69249213354
-
The COPI system: molecular mechanisms and function
-
Beck, R., Rawet, M., Wieland, F. T., and Cassel, D. (2009). The COPI system: molecular mechanisms and function. FEBS Lett. 583, 2701-2709. doi: 10.1016/j.febslet.2009.07.032
-
(2009)
FEBS Lett
, vol.583
, pp. 2701-2709
-
-
Beck, R.1
Rawet, M.2
Wieland, F.T.3
Cassel, D.4
-
5
-
-
56849110119
-
COPI complex is a regulator of lipid homeostasis
-
Beller, M., Sztalryd, C., Southall, N., Bell, M., Jäckle, H., Auld, D. S., et al. (2008). COPI complex is a regulator of lipid homeostasis. PLoS Biol. 6:e292. doi: 10.1371/journal.pbio.0060292
-
(2008)
PLoS Biol
, vol.6
-
-
Beller, M.1
Sztalryd, C.2
Southall, N.3
Bell, M.4
Jäckle, H.5
Auld, D.S.6
-
6
-
-
33747380991
-
An intimate collaboration between peroxisomes and lipid bodies
-
Binns, D., Januszewski, T., Chen, Y., Hill, J., Markin, V. S., Zhao, Y., et al. (2006). An intimate collaboration between peroxisomes and lipid bodies. J. Cell Biol. 173, 719-731. doi: 10.1083/jcb.200511125
-
(2006)
J. Cell Biol
, vol.173
, pp. 719-731
-
-
Binns, D.1
Januszewski, T.2
Chen, Y.3
Hill, J.4
Markin, V.S.5
Zhao, Y.6
-
7
-
-
0013993193
-
Ovarian steroid cells. II. The lutein cell
-
Blanchette, E. J. (1966). Ovarian steroid cells. II. The lutein cell. J. Cell Biol. 31, 517-542. doi: 10.1083/jcb.31.3.517
-
(1966)
J. Cell Biol
, vol.31
, pp. 517-542
-
-
Blanchette, E.J.1
-
8
-
-
0029069574
-
Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes
-
Blanchette-Mackie, E. J., Dwyer, N. K., Barber, T., Coxey, R. A., Takeda, T., Rondinone, C. M., et al. (1995). Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes. J. Lipid Res. 36, 1211-1226
-
(1995)
J. Lipid Res
, vol.36
, pp. 1211-1226
-
-
Blanchette-Mackie, E.J.1
Dwyer, N.K.2
Barber, T.3
Coxey, R.A.4
Takeda, T.5
Rondinone, C.M.6
-
9
-
-
84857632171
-
The lipid droplet coat protein perilipin 5 also localizes to muscle mitochondria
-
Bosma, M., Minnaard, R., Sparks, L. M., Schaart, G., Losen, M., De Baets, M. H., et al. (2012). The lipid droplet coat protein perilipin 5 also localizes to muscle mitochondria. Histochem. Cell Biol. 137, 205-216. doi: 10.1007/s00418-011-0888-x
-
(2012)
Histochem. Cell Biol
, vol.137
, pp. 205-216
-
-
Bosma, M.1
Minnaard, R.2
Sparks, L.M.3
Schaart, G.4
Losen, M.5
De Baets, M.H.6
-
10
-
-
8744267532
-
Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes
-
Brasaemle, D. L., Dolios, G., Shapiro, L., and Wang, R. (2004). Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J. Biol. Chem. 279, 46835-46842. doi: 10.1074/jbc.M409340200
-
(2004)
J. Biol. Chem
, vol.279
, pp. 46835-46842
-
-
Brasaemle, D.L.1
Dolios, G.2
Shapiro, L.3
Wang, R.4
-
11
-
-
84922780683
-
Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology
-
Cartwright, B. R., Binns, D. D., Hilton, C. L., Han, S., Gao, Q., and Goodman, J. M. (2015). Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology. Mol. Biol. Cell 26, 726-739. doi: 10.1091/mbc.E14-08-1303
-
(2015)
Mol. Biol. Cell
, vol.26
, pp. 726-739
-
-
Cartwright, B.R.1
Binns, D.D.2
Hilton, C.L.3
Han, S.4
Gao, Q.5
Goodman, J.M.6
-
12
-
-
33748598240
-
The lipid-droplet proteome reveals that droplets are a protein-storage depot
-
Cermelli, S., Guo, Y., Gross, S. P., and Welte, M. A. (2006). The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr. Biol. 16, 1783-1795. doi: 10.1016/j.cub.2006.07.062
-
(2006)
Curr. Biol
, vol.16
, pp. 1783-1795
-
-
Cermelli, S.1
Guo, Y.2
Gross, S.P.3
Welte, M.A.4
-
13
-
-
84879479282
-
Splicing and beyond: the many faces of the Prp19 complex
-
Chanarat, S., and SträSSer, K. (2013). Splicing and beyond: the many faces of the Prp19 complex. Biochim. Biophys. Acta 1833, 2126-2134. doi: 10.1016/j.bbamcr.2013.05.023
-
(2013)
Biochim. Biophys. Acta
, vol.1833
, pp. 2126-2134
-
-
Chanarat, S.1
Strässer, K.2
-
14
-
-
84855708946
-
Biogenesis and functions of lipid droplets in plants: thematic review series: lipid droplet synthesis and metabolism: from Yeast to man
-
Chapman, K. D., Dyer, J. M., and Mullen, R. T. (2012). Biogenesis and functions of lipid droplets in plants: thematic review series: lipid droplet synthesis and metabolism: from Yeast to man. J. Lipid Res. 53, 215-226. doi: 10.1194/jlr.R021436
-
(2012)
J. Lipid Res
, vol.53
, pp. 215-226
-
-
Chapman, K.D.1
Dyer, J.M.2
Mullen, R.T.3
-
15
-
-
0026341459
-
Acquisition of membrane lipids by differentiating glyoxysomes: role of lipid bodies
-
Chapman, K. D., and Trelease, R. N. (1991). Acquisition of membrane lipids by differentiating glyoxysomes: role of lipid bodies. J. Cell Biol. 115, 995-1007. doi: 10.1083/jcb.115.4.995
-
(1991)
J. Cell Biol
, vol.115
, pp. 995-1007
-
-
Chapman, K.D.1
Trelease, R.N.2
-
16
-
-
33947175844
-
Identification of mouse Prp19p as a lipid droplet-associated protein and its possible involvement in the biogenesis of lipid droplets
-
Cho, S. Y., Shin, E. S., Park, P. J., Shin, D. W., Chang, H. K., Kim, D., et al. (2007). Identification of mouse Prp19p as a lipid droplet-associated protein and its possible involvement in the biogenesis of lipid droplets. J. Biol. Chem. 282, 2456-2465. doi: 10.1074/jbc.M608042200
-
(2007)
J. Biol. Chem
, vol.282
, pp. 2456-2465
-
-
Cho, S.Y.1
Shin, E.S.2
Park, P.J.3
Shin, D.W.4
Chang, H.K.5
Kim, D.6
-
17
-
-
84927126103
-
Cholesterol transport through lysosome-peroxisome membrane contacts
-
Chu, B. B., Liao, Y. C., Qi, W., Xie, C., Du, X., Wang, J., et al. (2015). Cholesterol transport through lysosome-peroxisome membrane contacts. Cell 161, 291-306. doi: 10.1016/j.cell.2015.02.019
-
(2015)
Cell
, vol.161
, pp. 291-306
-
-
Chu, B.B.1
Liao, Y.C.2
Qi, W.3
Xie, C.4
Du, X.5
Wang, J.6
-
18
-
-
48249118352
-
Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole
-
Cocchiaro, J. L., Kumar, Y., Fischer, E. R., Hackstadt, T., and Valdivia, R. H. (2008). Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole. Proc. Natl. Acad. Sci. U.S.A. 105, 9379-9384. doi: 10.1073/pnas.0712241105
-
(2008)
Proc. Natl. Acad. Sci. U.S.A
, vol.105
, pp. 9379-9384
-
-
Cocchiaro, J.L.1
Kumar, Y.2
Fischer, E.R.3
Hackstadt, T.4
Valdivia, R.H.5
-
19
-
-
0014670256
-
Beta oxidation in glyoxysomes from castor bean endosperm
-
Cooper, T. G., and Beevers, H. (1969). Beta oxidation in glyoxysomes from castor bean endosperm. J. Biol. Chem. 244, 3514-3520
-
(1969)
J. Biol. Chem
, vol.244
, pp. 3514-3520
-
-
Cooper, T.G.1
Beevers, H.2
-
20
-
-
79959815079
-
Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages
-
Daniel, J., Maamar, H., Deb, C., Sirakova, T. D., and Kolattukudy, P. E. (2011). Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog. 7:e1002093. doi: 10.1371/journal.ppat.1002093
-
(2011)
PLoS Pathog
, vol.7
-
-
Daniel, J.1
Maamar, H.2
Deb, C.3
Sirakova, T.D.4
Kolattukudy, P.E.5
-
21
-
-
84896542255
-
Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis
-
Dupont, N., Chauhan, S., Arko-Mensah, J., Castillo, E. F., Masedunskas, A., Weigert, R., et al. (2014). Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis. Curr. Biol. 24, 609-620. doi: 10.1016/j.cub.2014.02.008
-
(2014)
Curr. Biol
, vol.24
, pp. 609-620
-
-
Dupont, N.1
Chauhan, S.2
Arko-Mensah, J.3
Castillo, E.F.4
Masedunskas, A.5
Weigert, R.6
-
22
-
-
70350700684
-
Conditions of endoplasmic reticulum stress stimulate lipid droplet formation in Saccharomyces cerevisiae
-
Fei, W., Wang, H., Fu, X., Bielby, C., and Yang, H. (2009). Conditions of endoplasmic reticulum stress stimulate lipid droplet formation in Saccharomyces cerevisiae. Biochem. J. 424, 61-67. doi: 10.1042/BJ20090785
-
(2009)
Biochem. J
, vol.424
, pp. 61-67
-
-
Fei, W.1
Wang, H.2
Fu, X.3
Bielby, C.4
Yang, H.5
-
23
-
-
54449092523
-
A block in endoplasmic reticulum-to-Golgi trafficking inhibits phospholipid synthesis and induces neutral lipid accumulation
-
Gaspar, M. L., Jesch, S. A., Viswanatha, R., Antosh, A. L., Brown, W. J., Kohlwein, S. D., et al. (2008). A block in endoplasmic reticulum-to-Golgi trafficking inhibits phospholipid synthesis and induces neutral lipid accumulation. J. Biol. Chem. 283, 25735-25751. doi: 10.1074/jbc.M802685200
-
(2008)
J. Biol. Chem
, vol.283
, pp. 25735-25751
-
-
Gaspar, M.L.1
Jesch, S.A.2
Viswanatha, R.3
Antosh, A.L.4
Brown, W.J.5
Kohlwein, S.D.6
-
24
-
-
84862908504
-
Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites
-
Gong, J., Sun, Z., Wu, L., Xu, W., Schieber, N., Xu, D., et al. (2011). Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. J. Cell Biol. 195, 953-963. doi: 10.1083/jcb.201104142
-
(2011)
J. Cell Biol
, vol.195
, pp. 953-963
-
-
Gong, J.1
Sun, Z.2
Wu, L.3
Xu, W.4
Schieber, N.5
Xu, D.6
-
25
-
-
57649116078
-
The gregarious lipid droplet
-
Goodman, J. M. (2008). The gregarious lipid droplet. J. Biol. Chem. 283, 28005-28009. doi: 10.1074/jbc.R800042200
-
(2008)
J. Biol. Chem
, vol.283
, pp. 28005-28009
-
-
Goodman, J.M.1
-
26
-
-
0025772167
-
Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets
-
Greenberg, A. S., Egan, J. J., Wek, S. A., Garty, N. B., Blanchette-Mackie, E. J., and Londos, C. (1991). Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. J. Biol. Chem. 266, 11341-11346
-
(1991)
J. Biol. Chem
, vol.266
, pp. 11341-11346
-
-
Greenberg, A.S.1
Egan, J.J.2
Wek, S.A.3
Garty, N.B.4
Blanchette-Mackie, E.J.5
Londos, C.6
-
27
-
-
84904647870
-
Cytosolic lipid droplets: from mechanisms of fat storage to disease
-
Gross, D. A., and Silver, D. L. (2014). Cytosolic lipid droplets: from mechanisms of fat storage to disease. Crit. Rev. Biochem. Mol. Biol. 49, 304-326. doi: 10.3109/10409238.2014.931337
-
(2014)
Crit. Rev. Biochem. Mol. Biol
, vol.49
, pp. 304-326
-
-
Gross, D.A.1
Silver, D.L.2
-
28
-
-
83755183360
-
Direct binding of triglyceride to fat storage-inducing transmembrane proteins 1 and 2 is important for lipid droplet formation
-
Gross, D. A., Zhan, C., and Silver, D. L. (2011). Direct binding of triglyceride to fat storage-inducing transmembrane proteins 1 and 2 is important for lipid droplet formation. Proc. Natl. Acad. Sci. U.S.A. 108, 19581-19586. doi: 10.1073/pnas.1110817108
-
(2011)
Proc. Natl. Acad. Sci. U.S.A
, vol.108
, pp. 19581-19586
-
-
Gross, D.A.1
Zhan, C.2
Silver, D.L.3
-
29
-
-
44449095056
-
Functional genomic screen reveals genes involved in lipid-droplet formation and utilization
-
Guo, Y., Walther, T. C., Rao, M., Stuurman, N., Goshima, G., Terayama, K., et al. (2008). Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 453, 657-661. doi: 10.1038/nature06928
-
(2008)
Nature
, vol.453
, pp. 657-661
-
-
Guo, Y.1
Walther, T.C.2
Rao, M.3
Stuurman, N.4
Goshima, G.5
Terayama, K.6
-
30
-
-
77953530388
-
Sterol-induced dislocation of 3-hydroxy-3-methylglutaryl coenzyme A reductase from endoplasmic reticulum membranes into the cytosol through a subcellular compartment resembling lipid droplets
-
Hartman, I. Z., Liu, P., Zehmer, J. K., Luby-Phelps, K., Jo, Y., Anderson, R. G., et al. (2010). Sterol-induced dislocation of 3-hydroxy-3-methylglutaryl coenzyme A reductase from endoplasmic reticulum membranes into the cytosol through a subcellular compartment resembling lipid droplets. J. Biol. Chem. 285, 19288-19298. doi: 10.1074/jbc.M110.134213
-
(2010)
J. Biol. Chem
, vol.285
, pp. 19288-19298
-
-
Hartman, I.Z.1
Liu, P.2
Zehmer, J.K.3
Luby-Phelps, K.4
Jo, Y.5
Anderson, R.G.6
-
31
-
-
84923057734
-
The life cycle of lipid droplets
-
Hashemi, H. F., and Goodman, J. M. (2015). The life cycle of lipid droplets. Curr. Opin. Cell Biol. 33, 119-124. doi: 10.1016/j.ceb.2015.02.002
-
(2015)
Curr. Opin. Cell Biol
, vol.33
, pp. 119-124
-
-
Hashemi, H.F.1
Goodman, J.M.2
-
32
-
-
0034820746
-
Direct interaction between glyoxysomes and lipid bodies in cotyledons of the Arabidopsis thaliana ped1 mutant
-
Hayashi, Y., Hayashi, M., Hayashi, H., Hara-Nishimura, I., and Nishimura, M. (2001). Direct interaction between glyoxysomes and lipid bodies in cotyledons of the Arabidopsis thaliana ped1 mutant. Protoplasma 218, 83-94. doi: 10.1007/BF01288364
-
(2001)
Protoplasma
, vol.218
, pp. 83-94
-
-
Hayashi, Y.1
Hayashi, M.2
Hayashi, H.3
Hara-Nishimura, I.4
Nishimura, M.5
-
33
-
-
84880617115
-
Organization and function of membrane contact sites
-
Helle, S. C., Kanfer, G., Kolar, K., Lang, A., Michel, A. H., and Kornmann, B. (2013). Organization and function of membrane contact sites. Biochim. Biophys. Acta 1833, 2526-2541. doi: 10.1016/j.bbamcr.2013.01.028
-
(2013)
Biochim. Biophys. Acta
, vol.1833
, pp. 2526-2541
-
-
Helle, S.C.1
Kanfer, G.2
Kolar, K.3
Lang, A.4
Michel, A.H.5
Kornmann, B.6
-
34
-
-
70749126722
-
Hydrophobic and basic domains target proteins to lipid droplets
-
Ingelmo-Torres, M., González-Moreno, E., Kassan, A., Hanzal-Bayer, M., Tebar, F., Herms, A., et al. (2009). Hydrophobic and basic domains target proteins to lipid droplets. Traffic 10, 1785-1801. doi: 10.1111/j.1600-0854.2009.00994.x
-
(2009)
Traffic
, vol.10
, pp. 1785-1801
-
-
Ingelmo-Torres, M.1
González-Moreno, E.2
Kassan, A.3
Hanzal-Bayer, M.4
Tebar, F.5
Herms, A.6
-
35
-
-
79960398841
-
Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae
-
Jacquier, N., Choudhary, V., Mari, M., Toulmay, A., Reggiori, F., and Schneiter, R. (2011). Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. J. Cell Sci. 124, 2424-2437. doi: 10.1242/jcs.076836
-
(2011)
J. Cell Sci
, vol.124
, pp. 2424-2437
-
-
Jacquier, N.1
Choudhary, V.2
Mari, M.3
Toulmay, A.4
Reggiori, F.5
Schneiter, R.6
-
36
-
-
84888101258
-
Expression of oleosin and perilipins in yeast promotes formation of lipid droplets from the endoplasmic reticulum
-
Jacquier, N., Mishra, S., Choudhary, V., and Schneiter, R. (2013). Expression of oleosin and perilipins in yeast promotes formation of lipid droplets from the endoplasmic reticulum. J. Cell Sci. 126, 5198-5209. doi: 10.1242/jcs.131896
-
(2013)
J. Cell Sci
, vol.126
, pp. 5198-5209
-
-
Jacquier, N.1
Mishra, S.2
Choudhary, V.3
Schneiter, R.4
-
37
-
-
84895764551
-
Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains
-
Kassan, A., Herms, A., Fernández-Vidal, A., Bosch, M., Schieber, N. L., Reddy, B. J., et al. (2013). Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. J. Cell Biol. 203, 985-1001. doi: 10.1083/jcb.201305142
-
(2013)
J. Cell Biol
, vol.203
, pp. 985-1001
-
-
Kassan, A.1
Herms, A.2
Fernández-Vidal, A.3
Bosch, M.4
Schieber, N.L.5
Reddy, B.J.6
-
38
-
-
84930182353
-
Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis
-
Kaushik, S., and Cuervo, A. M. (2015). Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat. Cell Biol. 17, 759-770. doi: 10.1038/ncb3166
-
(2015)
Nat. Cell Biol
, vol.17
, pp. 759-770
-
-
Kaushik, S.1
Cuervo, A.M.2
-
39
-
-
84891791144
-
Autophagosomes contribute to intracellular lipid distribution in enterocytes
-
Khaldoun, S. A., Emond-Boisjoly, M. A., Chateau, D., Carriére, V., Lacasa, M., Rousset, M., et al. (2014). Autophagosomes contribute to intracellular lipid distribution in enterocytes. Mol. Biol. Cell 25, 118-132. doi: 10.1091/mbc.E13-06-0324
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 118-132
-
-
Khaldoun, S.A.1
Emond-Boisjoly, M.A.2
Chateau, D.3
Carriére, V.4
Lacasa, M.5
Rousset, M.6
-
40
-
-
84892643146
-
Rapid induction of lipid droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by Brefeldin A
-
Kim, S., Kim, H., Ko, D., Yamaoka, Y., Otsuru, M., Kawai-Yamada, M., et al. (2013). Rapid induction of lipid droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by Brefeldin A. PLoS ONE 8:e81978. doi: 10.1371/journal.pone.0081978
-
(2013)
PLoS ONE
, vol.8
-
-
Kim, S.1
Kim, H.2
Ko, D.3
Yamaoka, Y.4
Otsuru, M.5
Kawai-Yamada, M.6
-
41
-
-
80054801259
-
Dual role of ancient ubiquitous protein 1 (AUP1) in lipid droplet accumulation and endoplasmic reticulum (ER) protein quality control
-
Klemm, E. J., Spooner, E., and Ploegh, H. L. (2011). Dual role of ancient ubiquitous protein 1 (AUP1) in lipid droplet accumulation and endoplasmic reticulum (ER) protein quality control. J. Biol. Chem. 286, 37602-37614. doi: 10.1074/jbc.M111.284794
-
(2011)
J. Biol. Chem
, vol.286
, pp. 37602-37614
-
-
Klemm, E.J.1
Spooner, E.2
Ploegh, H.L.3
-
42
-
-
84893703067
-
Role of adipose specific lipid droplet proteins in maintaining whole body energy homeostasis
-
Konige, M., Wang, H., and Sztalryd, C. (2014). Role of adipose specific lipid droplet proteins in maintaining whole body energy homeostasis. Biochim. Biophys. Acta 1842, 393-401. doi: 10.1016/j.bbadis.2013.05.007
-
(2014)
Biochim. Biophys. Acta
, vol.1842
, pp. 393-401
-
-
Konige, M.1
Wang, H.2
Sztalryd, C.3
-
43
-
-
80053927108
-
Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase
-
Krahmer, N., Guo, Y., Wilfling, F., Hilger, M., Lingrell, S., Heger, K., et al. (2011). Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase. Cell Metab. 14, 504-515. doi: 10.1016/j.cmet.2011.07.013
-
(2011)
Cell Metab
, vol.14
, pp. 504-515
-
-
Krahmer, N.1
Guo, Y.2
Wilfling, F.3
Hilger, M.4
Lingrell, S.5
Heger, K.6
-
44
-
-
79952313661
-
CIDEA interacts with liver X receptors in white fat cells
-
Kulyté, A., Pettersson, A. T., Antonson, P., Stenson, B. M., Langin, D., Gustafsson, J. A., et al. (2011). CIDEA interacts with liver X receptors in white fat cells. FEBS Lett. 585, 744-748. doi: 10.1016/j.febslet.2011.02.004
-
(2011)
FEBS Lett
, vol.585
, pp. 744-748
-
-
Kulyté, A.1
Pettersson, A.T.2
Antonson, P.3
Stenson, B.M.4
Langin, D.5
Gustafsson, J.A.6
-
45
-
-
84868700513
-
Nuclear lipid droplets: a novel nuclear domain
-
Layerenza, J. P., González, P., García De Bravo, M. M., Polo, M. P., Sisti, M. S., and Ves-Losada, A. (2013). Nuclear lipid droplets: a novel nuclear domain. Biochim. Biophys. Acta 1831, 327-340. doi: 10.1016/j.bbalip.2012.10.005
-
(2013)
Biochim. Biophys. Acta
, vol.1831
, pp. 327-340
-
-
Layerenza, J.P.1
González, P.2
García De Bravo, M.M.3
Polo, M.P.4
Sisti, M.S.5
Ves-Losada, A.6
-
46
-
-
0017805412
-
Rat liver peroxisomes catalyze the beta oxidation of fatty acids
-
Lazarow, P. B. (1978). Rat liver peroxisomes catalyze the beta oxidation of fatty acids. J. Biol. Chem. 253, 1522-1528
-
(1978)
J. Biol. Chem
, vol.253
, pp. 1522-1528
-
-
Lazarow, P.B.1
-
47
-
-
84887447290
-
FoxO1 controls lysosomal acid lipase in adipocytes: implication of lipophagy during nutrient restriction and metformin treatment
-
Lettieri Barbato, D., Tatulli, G., Aquilano, K., and Ciriolo, M. R. (2013). FoxO1 controls lysosomal acid lipase in adipocytes: implication of lipophagy during nutrient restriction and metformin treatment. Cell Death Dis. 4, e861. doi: 10.1038/cddis.2013.404
-
(2013)
Cell Death Dis
, vol.4
-
-
Lettieri Barbato, D.1
Tatulli, G.2
Aquilano, K.3
Ciriolo, M.R.4
-
48
-
-
84920724964
-
Storage lipid synthesis is necessary for autophagy induced by nitrogen starvation
-
Li, D., Song, J. Z., Li, H., Shan, M. H., Liang, Y., Zhu, J., et al. (2015). Storage lipid synthesis is necessary for autophagy induced by nitrogen starvation. FEBS Lett. 589, 269-276. doi: 10.1016/j.febslet.2014.11.050
-
(2015)
FEBS Lett
, vol.589
, pp. 269-276
-
-
Li, D.1
Song, J.Z.2
Li, H.3
Shan, M.H.4
Liang, Y.5
Zhu, J.6
-
49
-
-
84904055571
-
Drosophila lipid droplets buffer the H2Av supply to protect early embryonic development
-
Li, Z., Johnson, M. R., Ke, Z., Chen, L., and Welte, M. A. (2014). Drosophila lipid droplets buffer the H2Av supply to protect early embryonic development. Curr. Biol. 24, 1485-1491. doi: 10.1016/j.cub.2014.05.022
-
(2014)
Curr. Biol
, vol.24
, pp. 1485-1491
-
-
Li, Z.1
Johnson, M.R.2
Ke, Z.3
Chen, L.4
Welte, M.A.5
-
50
-
-
84869489094
-
Lipid droplets control the maternal histone supply of Drosophila embryos
-
Li, Z., Thiel, K., Thul, P. J., Beller, M., Kühnlein, R. P., and Welte, M. A. (2012). Lipid droplets control the maternal histone supply of Drosophila embryos. Curr. Biol. 22, 2104-2113. doi: 10.1016/j.cub.2012.09.018
-
(2012)
Curr. Biol
, vol.22
, pp. 2104-2113
-
-
Li, Z.1
Thiel, K.2
Thul, P.J.3
Beller, M.4
Kühnlein, R.P.5
Welte, M.A.6
-
51
-
-
84870995648
-
Regulation of lipid stores and metabolism by lipophagy
-
Liu, K., and Czaja, M. J. (2013). Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ. 20, 3-11. doi: 10.1038/cdd.2012.63
-
(2013)
Cell Death Differ
, vol.20
, pp. 3-11
-
-
Liu, K.1
Czaja, M.J.2
-
52
-
-
72249118392
-
Functional analysis of FSP27 protein regions for lipid droplet localization, caspase-dependent apoptosis, and dimerization with CIDEA
-
Liu, K., Zhou, S., Kim, J. Y., Tillison, K., Majors, D., Rearick, D., et al. (2009). Functional analysis of FSP27 protein regions for lipid droplet localization, caspase-dependent apoptosis, and dimerization with CIDEA. Am. J. Physiol. Endocrinol. Metab. 297, E1395-E1413. doi: 10.1152/ajpendo.00188.2009
-
(2009)
Am. J. Physiol. Endocrinol. Metab
, vol.297
, pp. E1395-E1413
-
-
Liu, K.1
Zhou, S.2
Kim, J.Y.3
Tillison, K.4
Majors, D.5
Rearick, D.6
-
53
-
-
34249674057
-
Rab-regulated interaction of early endosomes with lipid droplets
-
Liu, P., Bartz, R., Zehmer, J. K., Ying, Y. S., Zhu, M., Serrero, G., et al. (2007). Rab-regulated interaction of early endosomes with lipid droplets. Biochim. Biophys. Acta 1773, 784-793. doi: 10.1016/j.bbamcr.2007.02.004
-
(2007)
Biochim. Biophys. Acta
, vol.1773
, pp. 784-793
-
-
Liu, P.1
Bartz, R.2
Zehmer, J.K.3
Ying, Y.S.4
Zhu, M.5
Serrero, G.6
-
54
-
-
84859581542
-
Lipid droplet de novo formation and fission are linked to the cell cycle in fission yeast
-
Long, A. P., Manneschmidt, A. K., Verbrugge, B., Dortch, M. R., Minkin, S. C., Prater, K. E., et al. (2012). Lipid droplet de novo formation and fission are linked to the cell cycle in fission yeast. Traffic 13, 705-714. doi: 10.1111/j.1600-0854.2012.01339.x
-
(2012)
Traffic
, vol.13
, pp. 705-714
-
-
Long, A.P.1
Manneschmidt, A.K.2
Verbrugge, B.3
Dortch, M.R.4
Minkin, S.C.5
Prater, K.E.6
-
55
-
-
79957856854
-
The nucleoplasmic reticulum: form and function
-
Malhas, A., Goulbourne, C., and Vaux, D. J. (2011). The nucleoplasmic reticulum: form and function. Trends Cell Biol. 21, 362-373. doi: 10.1016/j.tcb.2011.03.008
-
(2011)
Trends Cell Biol
, vol.21
, pp. 362-373
-
-
Malhas, A.1
Goulbourne, C.2
Vaux, D.J.3
-
56
-
-
33744904687
-
The phosphorylation of serine 492 of perilipin a directs lipid droplet fragmentation and dispersion
-
Marcinkiewicz, A., Gauthier, D., Garcia, A., and Brasaemle, D. L. (2006). The phosphorylation of serine 492 of perilipin a directs lipid droplet fragmentation and dispersion. J. Biol. Chem. 281, 11901-11909. doi: 10.1074/jbc.M600171200
-
(2006)
J. Biol. Chem
, vol.281
, pp. 11901-11909
-
-
Marcinkiewicz, A.1
Gauthier, D.2
Garcia, A.3
Brasaemle, D.L.4
-
57
-
-
84892543665
-
An ER protein functionally couples neutral lipid metabolism on lipid droplets to membrane lipid synthesis in the ER
-
Markgraf, D. F., Klemm, R. W., Junker, M., Hannibal-Bach, H. K., Ejsing, C. S., and Rapoport, T. A. (2014). An ER protein functionally couples neutral lipid metabolism on lipid droplets to membrane lipid synthesis in the ER. Cell Rep. 6, 44-55. doi: 10.1016/j.celrep.2013.11.046
-
(2014)
Cell Rep
, vol.6
, pp. 44-55
-
-
Markgraf, D.F.1
Klemm, R.W.2
Junker, M.3
Hannibal-Bach, H.K.4
Ejsing, C.S.5
Rapoport, T.A.6
-
58
-
-
29644442801
-
Regulated localization of Rab18 to lipid droplets: effects of lipolytic stimulation and inhibition of lipid droplet catabolism
-
Martin, S., Driessen, K., Nixon, S. J., Zerial, M., and Parton, R. G. (2005). Regulated localization of Rab18 to lipid droplets: effects of lipolytic stimulation and inhibition of lipid droplet catabolism. J. Biol. Chem. 280, 42325-42335. doi: 10.1074/jbc.M506651200
-
(2005)
J. Biol. Chem
, vol.280
, pp. 42325-42335
-
-
Martin, S.1
Driessen, K.2
Nixon, S.J.3
Zerial, M.4
Parton, R.G.5
-
59
-
-
84923354171
-
Unraveling the roles of PLIN5: linking cell biology to physiology
-
Mason, R. R., and Watt, M. J. (2015). Unraveling the roles of PLIN5: linking cell biology to physiology. Trends Endocrinol. Metab. 26, 144-152. doi: 10.1016/j.tem.2015.01.005
-
(2015)
Trends Endocrinol. Metab
, vol.26
, pp. 144-152
-
-
Mason, R.R.1
Watt, M.J.2
-
60
-
-
78651466240
-
Modulation of lipid droplets by Mycobacterium leprae in Schwann cells: a putative mechanism for host lipid acquisition and bacterial survival in phagosomes
-
Mattos, K. A., Lara, F. A., Oliveira, V. G., Rodrigues, L. S., D'Avila, H., Melo, R. C., et al. (2011). Modulation of lipid droplets by Mycobacterium leprae in Schwann cells: a putative mechanism for host lipid acquisition and bacterial survival in phagosomes. Cell. Microbiol. 13, 259-273. doi: 10.1111/j.1462-5822.2010.01533.x
-
(2011)
Cell. Microbiol
, vol.13
, pp. 259-273
-
-
Mattos, K.A.1
Lara, F.A.2
Oliveira, V.G.3
Rodrigues, L.S.4
D'Avila, H.5
Melo, R.C.6
-
61
-
-
84898071985
-
Fat storage-inducing transmembrane protein 2 is required for normal fat storage in adipose tissue
-
Miranda, D. A., Kim, J. H., Nguyen, L. N., Cheng, W., Tan, B. C., Goh, V. J., et al. (2014). Fat storage-inducing transmembrane protein 2 is required for normal fat storage in adipose tissue. J. Biol. Chem. 289, 9560-9572. doi: 10.1074/jbc.M114.547687
-
(2014)
J. Biol. Chem
, vol.289
, pp. 9560-9572
-
-
Miranda, D.A.1
Kim, J.H.2
Nguyen, L.N.3
Cheng, W.4
Tan, B.C.5
Goh, V.J.6
-
62
-
-
84878562583
-
Identification of diverse lipid droplet targeting motifs in the PNPLA family of triglyceride lipases
-
Murugesan, S., Goldberg, E. B., Dou, E., and Brown, W. J. (2013). Identification of diverse lipid droplet targeting motifs in the PNPLA family of triglyceride lipases. PLoS ONE 8:e64950. doi: 10.1371/journal.pone.0064950
-
(2013)
PLoS ONE
, vol.8
-
-
Murugesan, S.1
Goldberg, E.B.2
Dou, E.3
Brown, W.J.4
-
63
-
-
4444266442
-
ADRP is dissociated from lipid droplets by ARF1-dependent mechanism
-
Nakamura, N., Akashi, T., Taneda, T., Kogo, H., Kikuchi, A., and Fujimoto, T. (2004). ADRP is dissociated from lipid droplets by ARF1-dependent mechanism. Biochem. Biophys. Res. Commun. 322, 957-965. doi: 10.1016/j.bbrc.2004.08.010
-
(2004)
Biochem. Biophys. Res. Commun
, vol.322
, pp. 957-965
-
-
Nakamura, N.1
Akashi, T.2
Taneda, T.3
Kogo, H.4
Kikuchi, A.5
Fujimoto, T.6
-
64
-
-
0019069651
-
Organelle relationships in cultured 3T3-L1 preadipocytes
-
Novikoff, A. B., Novikoff, P. M., Rosen, O. M., and Rubin, C. S. (1980). Organelle relationships in cultured 3T3-L1 preadipocytes. J. Cell Biol. 87, 180-196. doi: 10.1083/jcb.87.1.180
-
(1980)
J. Cell Biol
, vol.87
, pp. 180-196
-
-
Novikoff, A.B.1
Novikoff, P.M.2
Rosen, O.M.3
Rubin, C.S.4
-
65
-
-
33744755382
-
Cytoplasmic lipid droplets are sites of convergence of proteasomal and autophagic degradation of apolipoprotein B
-
Ohsaki, Y., Cheng, J., Fujita, A., Tokumoto, T., and Fujimoto, T. (2006). Cytoplasmic lipid droplets are sites of convergence of proteasomal and autophagic degradation of apolipoprotein B. Mol. Biol. Cell 17, 2674-2683. doi: 10.1091/mbc.E05-07-0659
-
(2006)
Mol. Biol. Cell
, vol.17
, pp. 2674-2683
-
-
Ohsaki, Y.1
Cheng, J.2
Fujita, A.3
Tokumoto, T.4
Fujimoto, T.5
-
66
-
-
80051540452
-
Lipid droplet formation is dispensable for endoplasmic reticulum-associated degradation
-
Olzmann, J. A., and Kopito, R. R. (2011). Lipid droplet formation is dispensable for endoplasmic reticulum-associated degradation. J. Biol. Chem. 286, 27872-27874. doi: 10.1074/jbc.C111.266452
-
(2011)
J. Biol. Chem
, vol.286
, pp. 27872-27874
-
-
Olzmann, J.A.1
Kopito, R.R.2
-
67
-
-
84872840929
-
Spatial regulation of UBXD8 and p97/VCP controls ATGL-mediated lipid droplet turnover
-
Olzmann, J. A., Richter, C. M., and Kopito, R. R. (2013). Spatial regulation of UBXD8 and p97/VCP controls ATGL-mediated lipid droplet turnover. Proc. Natl. Acad. Sci. U.S.A. 110, 1345-1350. doi: 10.1073/pnas.1213738110
-
(2013)
Proc. Natl. Acad. Sci. U.S.A
, vol.110
, pp. 1345-1350
-
-
Olzmann, J.A.1
Richter, C.M.2
Kopito, R.R.3
-
68
-
-
84859489655
-
Remodeling of lipid droplets during lipolysis and growth in adipocytes
-
Paar, M., Jüngst, C., Steiner, N. A., Magnes, C., Sinner, F., Kolb, D., et al. (2012). Remodeling of lipid droplets during lipolysis and growth in adipocytes. J. Biol. Chem. 287, 11164-11173. doi: 10.1074/jbc.M111.316794
-
(2012)
J. Biol. Chem
, vol.287
, pp. 11164-11173
-
-
Paar, M.1
Jüngst, C.2
Steiner, N.A.3
Magnes, C.4
Sinner, F.5
Kolb, D.6
-
69
-
-
34547216748
-
A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum
-
Ploegh, H. L. (2007). A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum. Nature 448, 435-438. doi: 10.1038/nature06004
-
(2007)
Nature
, vol.448
, pp. 435-438
-
-
Ploegh, H.L.1
-
70
-
-
84895735915
-
Review: biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites
-
Pol, A., Gross, S. P., and Parton, R. G. (2014). Review: biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites. J. Cell Biol. 204, 635-646. doi: 10.1083/jcb.201311051
-
(2014)
J. Cell Biol
, vol.204
, pp. 635-646
-
-
Pol, A.1
Gross, S.P.2
Parton, R.G.3
-
71
-
-
84922269099
-
The interplay of protein kinase A and perilipin 5 regulates cardiac lipolysis
-
Pollak, N. M., Jaeger, D., Kolleritsch, S., Zimmermann, R., Zechner, R., Lass, A., et al. (2015). The interplay of protein kinase A and perilipin 5 regulates cardiac lipolysis. J. Biol. Chem. 290, 1295-1306. doi: 10.1074/jbc.M114.604744
-
(2015)
J. Biol. Chem
, vol.290
, pp. 1295-1306
-
-
Pollak, N.M.1
Jaeger, D.2
Kolleritsch, S.3
Zimmermann, R.4
Zechner, R.5
Lass, A.6
-
72
-
-
36348940037
-
Fat-specific protein 27, a novel lipid droplet protein that enhances triglyceride storage
-
Puri, V., Konda, S., Ranjit, S., Aouadi, M., Chawla, A., Chouinard, M., et al. (2007). Fat-specific protein 27, a novel lipid droplet protein that enhances triglyceride storage. J. Biol. Chem. 282, 34213-34218. doi: 10.1074/jbc.M707404200
-
(2007)
J. Biol. Chem
, vol.282
, pp. 34213-34218
-
-
Puri, V.1
Konda, S.2
Ranjit, S.3
Aouadi, M.4
Chawla, A.5
Chouinard, M.6
-
73
-
-
84925324049
-
Fatty Acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics
-
Rambold, A. S., Cohen, S., and Lippincott-Schwartz, J. (2015). Fatty Acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev. Cell 32, 678-692. doi: 10.1016/j.devcel.2015.01.029
-
(2015)
Dev. Cell
, vol.32
, pp. 678-692
-
-
Rambold, A.S.1
Cohen, S.2
Lippincott-Schwartz, J.3
-
74
-
-
84896991817
-
Recent insights into the molecular pathophysiology of lipid droplet formation in hepatocytes
-
Sahini, N., and Borlak, J. (2014). Recent insights into the molecular pathophysiology of lipid droplet formation in hepatocytes. Prog. Lipid Res. 54, 86-112. doi: 10.1016/j.plipres.2014.02.002
-
(2014)
Prog. Lipid Res
, vol.54
, pp. 86-112
-
-
Sahini, N.1
Borlak, J.2
-
75
-
-
84867654401
-
Emerging roles for lipid droplets in immunity and host-pathogen interactions
-
Saka, H. A., and Valdivia, R. (2012). Emerging roles for lipid droplets in immunity and host-pathogen interactions. Annu. Rev. Cell Dev. Biol. 28, 411-437. doi: 10.1146/annurev-cellbio-092910-153958
-
(2012)
Annu. Rev. Cell Dev. Biol
, vol.28
, pp. 411-437
-
-
Saka, H.A.1
Valdivia, R.2
-
76
-
-
0034772785
-
Tubulo-reticular clusters of peroxisomes in living COS-7 cells: dynamic behavior and association with lipid droplets
-
Schrader, M. (2001). Tubulo-reticular clusters of peroxisomes in living COS-7 cells: dynamic behavior and association with lipid droplets. J. Histochem. Cytochem. 49, 1421-1429. doi: 10.1177/002215540104901110
-
(2001)
J. Histochem. Cytochem
, vol.49
, pp. 1421-1429
-
-
Schrader, M.1
-
77
-
-
84887527969
-
Lipid droplet breakdown requires dynamin 2 for vesiculation of autolysosomal tubules in hepatocytes
-
Schulze, R. J., Weller, S. G., Schroeder, B., Krueger, E. W., Chi, S., Casey, C. A., et al. (2013). Lipid droplet breakdown requires dynamin 2 for vesiculation of autolysosomal tubules in hepatocytes. J. Cell Biol. 203, 315-326. doi: 10.1083/jcb.201306140
-
(2013)
J. Cell Biol
, vol.203
, pp. 315-326
-
-
Schulze, R.J.1
Weller, S.G.2
Schroeder, B.3
Krueger, E.W.4
Chi, S.5
Casey, C.A.6
-
78
-
-
84923285482
-
Lysosome: regulator of lipid degradation pathways
-
Settembre, C., and Ballabio, A. (2014). Lysosome: regulator of lipid degradation pathways. Trends Cell Biol. 24, 743-750. doi: 10.1016/j.tcb.2014.06.006
-
(2014)
Trends Cell Biol
, vol.24
, pp. 743-750
-
-
Settembre, C.1
Ballabio, A.2
-
79
-
-
84889632159
-
Nuclear phosphoinositides and their impact on nuclear functions
-
Shah, Z. H., Jones, D. R., Sommer, L., Foulger, R., Bultsma, Y., D'Santos, C., et al. (2013). Nuclear phosphoinositides and their impact on nuclear functions. FEBS J. 280, 6295-6310. doi: 10.1111/febs.12543
-
(2013)
FEBS J
, vol.280
, pp. 6295-6310
-
-
Shah, Z.H.1
Jones, D.R.2
Sommer, L.3
Foulger, R.4
Bultsma, Y.5
D'Santos, C.6
-
80
-
-
84885850160
-
The human lipodystrophy protein seipin is an ER membrane adaptor for the adipogenic PA phosphatase lipin 1
-
Sim, M. F., Dennis, R. J., Aubry, E. M., Ramanathan, N., Sembongi, H., Saudek, V., et al. (2012). The human lipodystrophy protein seipin is an ER membrane adaptor for the adipogenic PA phosphatase lipin 1. Mol. Metab. 2, 38-46. doi: 10.1016/j.molmet.2012.11.002
-
(2012)
Mol. Metab
, vol.2
, pp. 38-46
-
-
Sim, M.F.1
Dennis, R.J.2
Aubry, E.M.3
Ramanathan, N.4
Sembongi, H.5
Saudek, V.6
-
81
-
-
65949095803
-
Autophagy regulates lipid metabolism
-
Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., et al. (2009a). Autophagy regulates lipid metabolism. Nature 458, 1131-1135. doi: 10.1038/nature07976
-
(2009)
Nature
, vol.458
, pp. 1131-1135
-
-
Singh, R.1
Kaushik, S.2
Wang, Y.3
Xiang, Y.4
Novak, I.5
Komatsu, M.6
-
82
-
-
70449448312
-
Autophagy regulates adipose mass and differentiation in mice
-
Singh, R., Xiang, Y., Wang, Y., Baikati, K., Cuervo, A. M., Luu, Y. K., et al. (2009b). Autophagy regulates adipose mass and differentiation in mice. J. Clin. Invest. 119, 3329-3339. doi: 10.1172/jci39228
-
(2009)
J. Clin. Invest
, vol.119
, pp. 3329-3339
-
-
Singh, R.1
Xiang, Y.2
Wang, Y.3
Baikati, K.4
Cuervo, A.M.5
Luu, Y.K.6
-
83
-
-
71449118409
-
Diacylglycerol enrichment of endoplasmic reticulum or lipid droplets recruits perilipin 3/TIP47 during lipid storage and mobilization
-
Skinner, J. R., Shew, T. M., Schwartz, D. M., Tzekov, A., Lepus, C. M., Abumrad, N. A., et al. (2009). Diacylglycerol enrichment of endoplasmic reticulum or lipid droplets recruits perilipin 3/TIP47 during lipid storage and mobilization. J. Biol. Chem. 284, 30941-30948. doi: 10.1074/jbc.M109.013995
-
(2009)
J. Biol. Chem
, vol.284
, pp. 30941-30948
-
-
Skinner, J.R.1
Shew, T.M.2
Schwartz, D.M.3
Tzekov, A.4
Lepus, C.M.5
Abumrad, N.A.6
-
84
-
-
84872472046
-
Monotopic topology is required for lipid droplet targeting of ancient ubiquitous protein 1
-
Stevanovic, A., and Thiele, C. (2013). Monotopic topology is required for lipid droplet targeting of ancient ubiquitous protein 1. J. Lipid Res. 54, 503-513. doi: 10.1194/jlr.M033852
-
(2013)
J. Lipid Res
, vol.54
, pp. 503-513
-
-
Stevanovic, A.1
Thiele, C.2
-
85
-
-
84863237087
-
Derlin-1 and UBXD8 are engaged in dislocation and degradation of lipidated ApoB-100 at lipid droplets
-
Suzuki, M., Otsuka, T., Ohsaki, Y., Cheng, J., Taniguchi, T., Hashimoto, H., et al. (2012). Derlin-1 and UBXD8 are engaged in dislocation and degradation of lipidated ApoB-100 at lipid droplets. Mol. Biol. Cell 23, 800-810. doi: 10.1091/mbc.E11-11-0950
-
(2012)
Mol. Biol. Cell
, vol.23
, pp. 800-810
-
-
Suzuki, M.1
Otsuka, T.2
Ohsaki, Y.3
Cheng, J.4
Taniguchi, T.5
Hashimoto, H.6
-
86
-
-
38049184643
-
The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology
-
Szymanski, K. M., Binns, D., Bartz, R., Grishin, N. V., Li, W. P., Agarwal, A. K., et al. (2007). The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc. Natl. Acad. Sci. U.S.A. 104, 20890-20895. doi: 10.1073/pnas.0704154104
-
(2007)
Proc. Natl. Acad. Sci. U.S.A
, vol.104
, pp. 20890-20895
-
-
Szymanski, K.M.1
Binns, D.2
Bartz, R.3
Grishin, N.V.4
Li, W.P.5
Agarwal, A.K.6
-
87
-
-
84924061517
-
Seipin oligomers can interact directly with AGPAT2 and lipin 1, physically scaffolding critical regulators of adipogenesis
-
Talukder, M. M., Sim, M. F., O'Rahilly, S., Edwardson, J. M., and Rochford, J. J. (2015). Seipin oligomers can interact directly with AGPAT2 and lipin 1, physically scaffolding critical regulators of adipogenesis. Mol. Metab. 4, 199-209. doi: 10.1016/j.molmet.2014.12.013
-
(2015)
Mol. Metab
, vol.4
, pp. 199-209
-
-
Talukder, M.M.1
Sim, M.F.2
O'Rahilly, S.3
Edwardson, J.M.4
Rochford, J.J.5
-
88
-
-
84885380382
-
Direct targeting of proteins to lipid droplets demonstrated by time-lapse live cell imaging
-
Tanaka, T., Kuroda, K., Ikeda, M., Kato, N., Shimizu, K., and Makishima, M. (2013). Direct targeting of proteins to lipid droplets demonstrated by time-lapse live cell imaging. J. Biosci. Bioeng. 116, 620-623. doi: 10.1016/j.jbiosc.2013.05.006
-
(2013)
J. Biosci. Bioeng
, vol.116
, pp. 620-623
-
-
Tanaka, T.1
Kuroda, K.2
Ikeda, M.3
Kato, N.4
Shimizu, K.5
Makishima, M.6
-
89
-
-
33847755111
-
Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity
-
Tarnopolsky, M. A., Rennie, C. D., Robertshaw, H. A., Fedak-Tarnopolsky, S. N., Devries, M. C., and Hamadeh, M. J. (2007). Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1271-R1278. doi: 10.1152/ajpregu.00472.2006
-
(2007)
Am. J. Physiol. Regul. Integr. Comp. Physiol
, vol.292
, pp. R1271-R1278
-
-
Tarnopolsky, M.A.1
Rennie, C.D.2
Robertshaw, H.A.3
Fedak-Tarnopolsky, S.N.4
Devries, M.C.5
Hamadeh, M.J.6
-
90
-
-
0037113954
-
The surface of lipid droplets is a phospholipid monolayer with a unique Fatty Acid composition
-
Tauchi-Sato, K., Ozeki, S., Houjou, T., Taguchi, R., and Fujimoto, T. (2002). The surface of lipid droplets is a phospholipid monolayer with a unique Fatty Acid composition. J. Biol. Chem. 277, 44507-44512. doi: 10.1074/jbc.M207712200
-
(2002)
J. Biol. Chem
, vol.277
, pp. 44507-44512
-
-
Tauchi-Sato, K.1
Ozeki, S.2
Houjou, T.3
Taguchi, R.4
Fujimoto, T.5
-
91
-
-
84961289444
-
Peroxisome extensions deliver the Arabidopsis SDP1 lipase to oil bodies
-
Thazar-Poulot, N., Miquel, M., Fobis-Loisy, I., and Gaude, T. (2015). Peroxisome extensions deliver the Arabidopsis SDP1 lipase to oil bodies. Proc. Natl. Acad. Sci. U.S.A. 112, 4158-4163. doi: 10.1073/pnas.1403322112
-
(2015)
Proc. Natl. Acad. Sci. U.S.A
, vol.112
, pp. 4158-4163
-
-
Thazar-Poulot, N.1
Miquel, M.2
Fobis-Loisy, I.3
Gaude, T.4
-
92
-
-
84882290578
-
COPI buds 60-nm lipid droplets from reconstituted water-phospholipid-triacylglyceride interfaces, suggesting a tension clamp function
-
Thiam, A. R., Antonny, B., Wang, J., Delacotte, J., Wilfling, F., Walther, T. C., et al. (2013a). COPI buds 60-nm lipid droplets from reconstituted water-phospholipid-triacylglyceride interfaces, suggesting a tension clamp function. Proc. Natl. Acad. Sci. U.S.A. 110, 13244-13249. doi: 10.1073/pnas.1307685110
-
(2013)
Proc. Natl. Acad. Sci. U.S.A
, vol.110
, pp. 13244-13249
-
-
Thiam, A.R.1
Antonny, B.2
Wang, J.3
Delacotte, J.4
Wilfling, F.5
Walther, T.C.6
-
93
-
-
84888367601
-
The biophysics and cell biology of lipid droplets
-
Thiam, A. R., Farese, R. V. Jr., and Walther, T. C. (2013b). The biophysics and cell biology of lipid droplets. Nat. Rev. Mol. Cell Biol. 14, 775-786. doi: 10.1038/nrm3699
-
(2013)
Nat. Rev. Mol. Cell Biol
, vol.14
, pp. 775-786
-
-
Thiam, A.R.1
Farese, R.V.2
Walther, T.C.3
-
94
-
-
84879872506
-
The evolutionarily conserved protein CG9186 is associated with lipid droplets, required for their positioning and for fat storage
-
Thiel, K., Heier, C., Haberl, V., Thul, P. J., Oberer, M., Lass, A., et al. (2013). The evolutionarily conserved protein CG9186 is associated with lipid droplets, required for their positioning and for fat storage. J. Cell Sci. 126, 2198-2212. doi: 10.1242/jcs.120493
-
(2013)
J. Cell Sci
, vol.126
, pp. 2198-2212
-
-
Thiel, K.1
Heier, C.2
Haberl, V.3
Thul, P.J.4
Oberer, M.5
Lass, A.6
-
95
-
-
55849148071
-
Identification and characterization of the nuclear isoform of Drosophila melanogaster CTP: phosphocholine cytidylyltransferase
-
Tilley, D. M., Evans, C. R., Larson, T. M., Edwards, K. A., and Friesen, J. A. (2008). Identification and characterization of the nuclear isoform of Drosophila melanogaster CTP: phosphocholine cytidylyltransferase. Biochemistry 47, 11838-11846. doi: 10.1021/bi801161s
-
(2008)
Biochemistry
, vol.47
, pp. 11838-11846
-
-
Tilley, D.M.1
Evans, C.R.2
Larson, T.M.3
Edwards, K.A.4
Friesen, J.A.5
-
96
-
-
84874052715
-
Fat-specific protein 27 modulates nuclear factor of activated T cells 5 and the cellular response to stress
-
Ueno, M., Shen, W. J., Patel, S., Greenberg, A. S., Azhar, S., and Kraemer, F. B. (2013). Fat-specific protein 27 modulates nuclear factor of activated T cells 5 and the cellular response to stress. J. Lipid Res. 54, 734-743. doi: 10.1194/jlr.M033365
-
(2013)
J. Lipid Res
, vol.54
, pp. 734-743
-
-
Ueno, M.1
Shen, W.J.2
Patel, S.3
Greenberg, A.S.4
Azhar, S.5
Kraemer, F.B.6
-
97
-
-
84884653654
-
Nuclear lipid droplets identified by electron microscopy of serial sections
-
Uzbekov, R., and Roingeard, P. (2013). Nuclear lipid droplets identified by electron microscopy of serial sections. BMC Res. Notes 6:386. doi: 10.1186/1756-0500-6-386
-
(2013)
BMC Res. Notes
, vol.6
, pp. 386
-
-
Uzbekov, R.1
Roingeard, P.2
-
98
-
-
84892536117
-
Lipid droplet autophagy in the yeast Saccharomyces cerevisiae
-
van Zutphen, T., Todde, V., De Boer, R., Kreim, M., Hofbauer, H. F., Wolinski, H., et al. (2014). Lipid droplet autophagy in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 25, 290-301. doi: 10.1091/mbc.E13-08-0448
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 290-301
-
-
van Zutphen, T.1
Todde, V.2
De Boer, R.3
Kreim, M.4
Hofbauer, H.F.5
Wolinski, H.6
-
99
-
-
0023361695
-
Proliferation of microbodies in Saccharomyces cerevisiae
-
Veenhuis, M., Mateblowski, M., Kunau, W. H., and Harder, W. (1987). Proliferation of microbodies in Saccharomyces cerevisiae. Yeast 3, 77-84. doi: 10.1002/yea.320030204
-
(1987)
Yeast
, vol.3
, pp. 77-84
-
-
Veenhuis, M.1
Mateblowski, M.2
Kunau, W.H.3
Harder, W.4
-
100
-
-
84861913952
-
Lipid droplets and cellular lipid metabolism
-
Walther, T. C., and Farese, R. V. Jr. (2012). Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem. 81, 687-714. doi: 10.1146/annurev-biochem-061009-102430
-
(2012)
Annu. Rev. Biochem
, vol.81
, pp. 687-714
-
-
Walther, T.C.1
Farese, R.V.2
-
101
-
-
84867426217
-
The ubiquitin-like (UBX)-domain-containing protein Ubx2/Ubxd8 regulates lipid droplet homeostasis
-
Wang, C. W., and Lee, S. C. (2012). The ubiquitin-like (UBX)-domain-containing protein Ubx2/Ubxd8 regulates lipid droplet homeostasis. J. Cell Sci. 125, 2930-2939. doi: 10.1242/jcs.100230
-
(2012)
J. Cell Sci
, vol.125
, pp. 2930-2939
-
-
Wang, C.W.1
Lee, S.C.2
-
102
-
-
84905981861
-
A sterol-enriched vacuolar microdomain mediates stationary phase lipophagy in budding yeast
-
Wang, C. W., Miao, Y. H., and Chang, Y. S. (2014). A sterol-enriched vacuolar microdomain mediates stationary phase lipophagy in budding yeast. J. Cell Biol. 206, 357-366. doi: 10.1083/jcb.201404115
-
(2014)
J. Cell Biol
, vol.206
, pp. 357-366
-
-
Wang, C.W.1
Miao, Y.H.2
Chang, Y.S.3
-
103
-
-
80455135722
-
Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria
-
Wang, H., Sreenivasan, U., Hu, H., Saladino, A., Polster, B. M., Lund, L. M., et al. (2011). Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. J. Lipid Res. 52, 2159-2168. doi: 10.1194/jlr.M017939
-
(2011)
J. Lipid Res
, vol.52
, pp. 2159-2168
-
-
Wang, H.1
Sreenivasan, U.2
Hu, H.3
Saladino, A.4
Polster, B.M.5
Lund, L.M.6
-
104
-
-
84862778000
-
Cidea is an essential transcriptional coactivator regulating mammary gland secretion of milk lipids
-
Wang, W., Lv, N., Zhang, S., Shui, G., Qian, H., Zhang, J., et al. (2012). Cidea is an essential transcriptional coactivator regulating mammary gland secretion of milk lipids. Nat. Med. 18, 235-243. doi: 10.1038/nm.2614
-
(2012)
Nat. Med
, vol.18
, pp. 235-243
-
-
Wang, W.1
Lv, N.2
Zhang, S.3
Shui, G.4
Qian, H.5
Zhang, J.6
-
105
-
-
34548514866
-
Proteins under new management: lipid droplets deliver
-
Welte, M. A. (2007). Proteins under new management: lipid droplets deliver. Trends Cell Biol. 17, 363-369. doi: 10.1016/j.tcb.2007.06.004
-
(2007)
Trends Cell Biol
, vol.17
, pp. 363-369
-
-
Welte, M.A.1
-
106
-
-
84930655630
-
Expanding roles for lipid droplets
-
Welte, M. A. (2015). Expanding roles for lipid droplets. Curr. Biol. 25, R470-R481. doi: 10.1016/j.cub.2015.04.004
-
(2015)
Curr. Biol
, vol.25
, pp. R470-R481
-
-
Welte, M.A.1
-
107
-
-
84898645712
-
Lipid droplet biogenesis
-
Wilfling, F., Haas, J. T., Walther, T. C., and Farese, R. V. Jr. (2014a). Lipid droplet biogenesis. Curr. Opin. Cell Biol. 29, 39-45. doi: 10.1016/j.ceb.2014.03.008
-
(2014)
Curr. Opin. Cell Biol
, vol.29
, pp. 39-45
-
-
Wilfling, F.1
Haas, J.T.2
Walther, T.C.3
Farese, R.V.4
-
108
-
-
84898715853
-
Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting
-
Wilfling, F., Thiam, A. R., Olarte, M. J., Wang, J., Beck, R., Gould, T. J., et al. (2014b). Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting. Elife 3:e01607. doi: 10.7554/eLife.01607
-
(2014)
Elife
, vol.3
-
-
Wilfling, F.1
Thiam, A.R.2
Olarte, M.J.3
Wang, J.4
Beck, R.5
Gould, T.J.6
-
109
-
-
84875326507
-
Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets
-
Wilfling, F., Wang, H., Haas, J. T., Krahmer, N., Gould, T. J., Uchida, A., et al. (2013). Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev. Cell 24, 384-399. doi: 10.1016/j.devcel.2013.01.013
-
(2013)
Dev. Cell
, vol.24
, pp. 384-399
-
-
Wilfling, F.1
Wang, H.2
Haas, J.T.3
Krahmer, N.4
Gould, T.J.5
Uchida, A.6
-
110
-
-
33749058310
-
A proposed model of fat packaging by exchangeable lipid droplet proteins
-
Wolins, N. E., Brasaemle, D. L., and Bickel, P. E. (2006). A proposed model of fat packaging by exchangeable lipid droplet proteins. FEBS Lett. 580, 5484-5491. doi: 10.1016/j.febslet.2006.08.040
-
(2006)
FEBS Lett
, vol.580
, pp. 5484-5491
-
-
Wolins, N.E.1
Brasaemle, D.L.2
Bickel, P.E.3
-
111
-
-
84907327727
-
Rab8a-AS160-MSS4 regulatory circuit controls lipid droplet fusion and growth
-
Wu, L., Xu, D., Zhou, L., Xie, B., Yu, L., Yang, H., et al. (2014). Rab8a-AS160-MSS4 regulatory circuit controls lipid droplet fusion and growth. Dev. Cell 30, 378-393. doi: 10.1016/j.devcel.2014.07.005
-
(2014)
Dev. Cell
, vol.30
, pp. 378-393
-
-
Wu, L.1
Xu, D.2
Zhou, L.3
Xie, B.4
Yu, L.5
Yang, H.6
-
112
-
-
77956232915
-
Induction of liver steatosis and lipid droplet formation in ATF6alpha-knockout mice burdened with pharmacological endoplasmic reticulum stress
-
Yamamoto, K., Takahara, K., Oyadomari, S., Okada, T., Sato, T., Harada, A., et al. (2010). Induction of liver steatosis and lipid droplet formation in ATF6alpha-knockout mice burdened with pharmacological endoplasmic reticulum stress. Mol. Biol. Cell 21, 2975-2986. doi: 10.1091/mbc.E09-02-0133
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 2975-2986
-
-
Yamamoto, K.1
Takahara, K.2
Oyadomari, S.3
Okada, T.4
Sato, T.5
Harada, A.6
-
113
-
-
84862313783
-
The proteomics of lipid droplets: structure, dynamics, and functions of the organelle conserved from bacteria to humans
-
Yang, L., Ding, Y., Chen, Y., Zhang, S., Huo, C., Wang, Y., et al. (2012). The proteomics of lipid droplets: structure, dynamics, and functions of the organelle conserved from bacteria to humans. J. Lipid Res. 53, 1245-1253. doi: 10.1194/jlr.R024117
-
(2012)
J. Lipid Res
, vol.53
, pp. 1245-1253
-
-
Yang, L.1
Ding, Y.2
Chen, Y.3
Zhang, S.4
Huo, C.5
Wang, Y.6
-
114
-
-
84862864249
-
Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis
-
Yuan, Y., Li, P., and Ye, J. (2012). Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis. Protein Cell 3, 173-181. doi: 10.1007/s13238-012-2025-6
-
(2012)
Protein Cell
, vol.3
, pp. 173-181
-
-
Yuan, Y.1
Li, P.2
Ye, J.3
|