메뉴 건너뛰기




Volumn 27, Issue 1, 2015, Pages 211-227

Efficient training of convolutional deep belief networks in the frequency domain for application to high-resolution 2D and 3D images

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ANIMAL; ARTIFICIAL NEURAL NETWORK; COMPUTER ASSISTED DIAGNOSIS; COMPUTER GRAPHICS; HUMAN; LEARNING; PHYSIOLOGY;

EID: 84920106320     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00682     Document Type: Letter
Times cited : (57)

References (20)
  • 1
    • 84897570416 scopus 로고    scopus 로고
    • Manifold learning of brainMRIs by deep learning
    • K. Mori, I. Sakuma, Y. Sato, C. Barillot, & N. Navab (Eds.), Part II, LNCS 8150 Berlin: Springer.
    • Brosch, T., & Tam, R. (2013).Manifold learning of brainMRIs by deep learning. In K. Mori, I. Sakuma, Y. Sato, C. Barillot, & N. Navab (Eds.), Medical image computing and computer-assisted intervention 2013, Part II, LNCS 8150 (pp. 633-640). Berlin: Springer.
    • (2013) Medical image computing and computer-assisted intervention 2013 , pp. 633-640
    • Brosch, T.1    Tam, R.2
  • 2
    • 84881641626 scopus 로고    scopus 로고
    • Deep neural networks segment neuronal membranes in electron microscopy images
    • F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in neural information processing systems, 25 (pp. 1-9). Red Hook, NY: Curran.
    • Ciresan, D., Giusti, A., & Schmidhuber, J. (2012). Deep neural networks segment neuronal membranes in electron microscopy images. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in neural information processing systems, 25 (pp. 1-9). Red Hook, NY: Curran.
    • (2012)
    • Ciresan, D.1    Giusti, A.2    Schmidhuber, J.3
  • 3
    • 84885929616 scopus 로고    scopus 로고
    • A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection
    • In K. Mori, I. Sakuma, Y. Sato, C. Barillot, & N. Navab (Eds.), Part II, LNCS 8150. Berlin: Springer
    • Cruz-Roa, A. A., Edison, J., Ovalle, A., Madabhushi, A., & Gonz, F. A. (2013). A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. In K. Mori, I. Sakuma, Y. Sato, C. Barillot, & N. Navab (Eds.), Medical image computing and computer-assisted intervention, 2013, Part II, LNCS 8150 (pp. 403-410). Berlin: Springer.
    • (2013) Medical image computing and computer-assisted intervention , vol.2013 , pp. 403-410
    • Cruz-Roa, A.A.1    Edison, J.2    Ovalle, A.3    Madabhushi, A.4    Gonz, F.A.5
  • 5
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8), 1771-1800.
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 6
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527-1554.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 9
    • 84878919540 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • F. Pereira, C. J. C. Burges, L. Bottou, & K.Weinberger (Eds.), Red Hook, NY: Curran.
    • Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). ImageNet classification with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K.Weinberger (Eds.), Advances in neural information processing systems, 25 (pp. 1-9). Red Hook, NY: Curran.
    • (2012) Advances in neural information processing systems , vol.25 , pp. 1-9
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 11
    • 80053540444 scopus 로고    scopus 로고
    • Unsupervised learning of hierarchical representations with convolutional deep belief networks
    • Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2011). Unsupervised learning of hierarchical representations with convolutional deep belief networks. Communications of the ACM, 54(10), 95-103.
    • (2011) Communications of the ACM , vol.54 , Issue.10 , pp. 95-103
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 13
    • 84897576138 scopus 로고    scopus 로고
    • Representation learning: A unified deep learning framework for automatic prostate MR segmentation
    • In K. Morin, I. Sakuma, Y. Sato, C. Barillot, & N. Navab (Eds.),Part II, LNCS 8150 Berlin: Springer
    • Liao, S., Gao, Y., Oto, A., & Shen, D. (2013). Representation learning: A unified deep learning framework for automatic prostate MR segmentation. In K. Morin, I. Sakuma, Y. Sato, C. Barillot, & N. Navab (Eds.), Medical image computing and computer-assisted intervention, 2013, Part II, LNCS 8150 (pp. 254-261). Berlin: Springer.
    • (2013) Medical image computing and computer-assisted intervention , vol.2013 , pp. 254-261
    • Liao, S.1    Gao, Y.2    Oto, A.3    Shen, D.4
  • 14
    • 34548409688 scopus 로고    scopus 로고
    • Open access series of imaging studies (OASIS): Cross-sectional MRI data in young, middle aged, nondemented, and demented older adults
    • Marcus, D. S., Wang, T. H., Parker, J., Csernansky, J. G., Morris, J. C., & Buckner, R. L. (2007). Open access series of imaging studies (OASIS): Cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. Journal of Cognitive Neuroscience, 19(9), 1498-1507.
    • (2007) Journal of Cognitive Neuroscience , vol.19 , Issue.9 , pp. 1498-1507
    • Marcus, D.S.1    Wang, T.H.2    Parker, J.3    Csernansky, J.G.4    Morris, J.C.5    Buckner, R.L.6
  • 17
    • 71149105669 scopus 로고    scopus 로고
    • Large-scale deep unsupervised learning using graphics processors
    • L. Bottou & M. Littman (Eds.), . Madison, WI:Omnipress.
    • Raina, R., & Madhavan, A. (2009). Large-scale deep unsupervised learning using graphics processors. In L. Bottou & M. Littman (Eds.), Proceedings of the 26th International Conference on Machine Learning. Madison, WI:Omnipress.
    • (2009) Proceedings of the 26th International Conference on Machine Learning
    • Raina, R.1    Madhavan, A.2
  • 19
    • 84892841517 scopus 로고    scopus 로고
    • Unsupervised deep feature learning for deformable registration of MR brain images
    • In K. Mori, I. Sakuma, Y. Sato, C. Barillot, & N. Navab (Eds.), Part II, LNCS 8150
    • Wu, G., Kim, M., Wang, Q., & Gao, Y. (2013). Unsupervised deep feature learning for deformable registration of MR brain images. In K. Mori, I. Sakuma, Y. Sato, C. Barillot, & N. Navab (Eds.), Medical image computing and computer-assisted intervention, 2013, Part II, LNCS 8150 (pp. 649-656).
    • (2013) Medical image computing and computer-assisted intervention , vol.2013 , pp. 649-656
    • Wu, G.1    Kim, M.2    Wang, Q.3    Gao, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.