-
1
-
-
84897570416
-
Manifold learning of brainMRIs by deep learning
-
K. Mori, I. Sakuma, Y. Sato, C. Barillot, & N. Navab (Eds.), Part II, LNCS 8150 Berlin: Springer.
-
Brosch, T., & Tam, R. (2013).Manifold learning of brainMRIs by deep learning. In K. Mori, I. Sakuma, Y. Sato, C. Barillot, & N. Navab (Eds.), Medical image computing and computer-assisted intervention 2013, Part II, LNCS 8150 (pp. 633-640). Berlin: Springer.
-
(2013)
Medical image computing and computer-assisted intervention 2013
, pp. 633-640
-
-
Brosch, T.1
Tam, R.2
-
2
-
-
84881641626
-
Deep neural networks segment neuronal membranes in electron microscopy images
-
F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in neural information processing systems, 25 (pp. 1-9). Red Hook, NY: Curran.
-
Ciresan, D., Giusti, A., & Schmidhuber, J. (2012). Deep neural networks segment neuronal membranes in electron microscopy images. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in neural information processing systems, 25 (pp. 1-9). Red Hook, NY: Curran.
-
(2012)
-
-
Ciresan, D.1
Giusti, A.2
Schmidhuber, J.3
-
3
-
-
84885929616
-
A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection
-
In K. Mori, I. Sakuma, Y. Sato, C. Barillot, & N. Navab (Eds.), Part II, LNCS 8150. Berlin: Springer
-
Cruz-Roa, A. A., Edison, J., Ovalle, A., Madabhushi, A., & Gonz, F. A. (2013). A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. In K. Mori, I. Sakuma, Y. Sato, C. Barillot, & N. Navab (Eds.), Medical image computing and computer-assisted intervention, 2013, Part II, LNCS 8150 (pp. 403-410). Berlin: Springer.
-
(2013)
Medical image computing and computer-assisted intervention
, vol.2013
, pp. 403-410
-
-
Cruz-Roa, A.A.1
Edison, J.2
Ovalle, A.3
Madabhushi, A.4
Gonz, F.A.5
-
4
-
-
85198028989
-
ImageNet: A large-scale hierarchical image database
-
Piscataway, NJ: IEEE.
-
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 248-255). Piscataway, NJ: IEEE.
-
(2009)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
5
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8), 1771-1800.
-
(2002)
Neural Computation
, vol.14
, Issue.8
, pp. 1771-1800
-
-
Hinton, G.E.1
-
6
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527-1554.
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
9
-
-
84878919540
-
ImageNet classification with deep convolutional neural networks
-
F. Pereira, C. J. C. Burges, L. Bottou, & K.Weinberger (Eds.), Red Hook, NY: Curran.
-
Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). ImageNet classification with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K.Weinberger (Eds.), Advances in neural information processing systems, 25 (pp. 1-9). Red Hook, NY: Curran.
-
(2012)
Advances in neural information processing systems
, vol.25
, pp. 1-9
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
10
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
New York: ACM.
-
Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2009). Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Proceedings of the 26th Annual International Conference on Machine Learning (pp. 609-616). New York: ACM.
-
(2009)
Proceedings of the 26th Annual International Conference on Machine Learning
, pp. 609-616
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
11
-
-
80053540444
-
Unsupervised learning of hierarchical representations with convolutional deep belief networks
-
Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2011). Unsupervised learning of hierarchical representations with convolutional deep belief networks. Communications of the ACM, 54(10), 95-103.
-
(2011)
Communications of the ACM
, vol.54
, Issue.10
, pp. 95-103
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
12
-
-
80055033961
-
Towards a deep learning approach to brain parcellation
-
Piscataway, NJ: IEEE.
-
Lee, N., Laine, A.,& Klein, A. (2011). Towards a deep learning approach to brain parcellation. In Proceedings of the IEEE International Symposium on Biomedical Imaging (pp. 321-324). Piscataway, NJ: IEEE.
-
(2011)
Proceedings of the IEEE International Symposium on Biomedical Imaging
, pp. 321-324
-
-
Lee, N.1
Laine, A.2
Klein, A.3
-
13
-
-
84897576138
-
Representation learning: A unified deep learning framework for automatic prostate MR segmentation
-
In K. Morin, I. Sakuma, Y. Sato, C. Barillot, & N. Navab (Eds.),Part II, LNCS 8150 Berlin: Springer
-
Liao, S., Gao, Y., Oto, A., & Shen, D. (2013). Representation learning: A unified deep learning framework for automatic prostate MR segmentation. In K. Morin, I. Sakuma, Y. Sato, C. Barillot, & N. Navab (Eds.), Medical image computing and computer-assisted intervention, 2013, Part II, LNCS 8150 (pp. 254-261). Berlin: Springer.
-
(2013)
Medical image computing and computer-assisted intervention
, vol.2013
, pp. 254-261
-
-
Liao, S.1
Gao, Y.2
Oto, A.3
Shen, D.4
-
14
-
-
34548409688
-
Open access series of imaging studies (OASIS): Cross-sectional MRI data in young, middle aged, nondemented, and demented older adults
-
Marcus, D. S., Wang, T. H., Parker, J., Csernansky, J. G., Morris, J. C., & Buckner, R. L. (2007). Open access series of imaging studies (OASIS): Cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. Journal of Cognitive Neuroscience, 19(9), 1498-1507.
-
(2007)
Journal of Cognitive Neuroscience
, vol.19
, Issue.9
, pp. 1498-1507
-
-
Marcus, D.S.1
Wang, T.H.2
Parker, J.3
Csernansky, J.G.4
Morris, J.C.5
Buckner, R.L.6
-
17
-
-
71149105669
-
Large-scale deep unsupervised learning using graphics processors
-
L. Bottou & M. Littman (Eds.), . Madison, WI:Omnipress.
-
Raina, R., & Madhavan, A. (2009). Large-scale deep unsupervised learning using graphics processors. In L. Bottou & M. Littman (Eds.), Proceedings of the 26th International Conference on Machine Learning. Madison, WI:Omnipress.
-
(2009)
Proceedings of the 26th International Conference on Machine Learning
-
-
Raina, R.1
Madhavan, A.2
-
19
-
-
84892841517
-
Unsupervised deep feature learning for deformable registration of MR brain images
-
In K. Mori, I. Sakuma, Y. Sato, C. Barillot, & N. Navab (Eds.), Part II, LNCS 8150
-
Wu, G., Kim, M., Wang, Q., & Gao, Y. (2013). Unsupervised deep feature learning for deformable registration of MR brain images. In K. Mori, I. Sakuma, Y. Sato, C. Barillot, & N. Navab (Eds.), Medical image computing and computer-assisted intervention, 2013, Part II, LNCS 8150 (pp. 649-656).
-
(2013)
Medical image computing and computer-assisted intervention
, vol.2013
, pp. 649-656
-
-
Wu, G.1
Kim, M.2
Wang, Q.3
Gao, Y.4
|