메뉴 건너뛰기




Volumn 46, Issue 12, 2016, Pages 2455-2465

Machine learning, statistical learning and the future of biological research in psychiatry

Author keywords

Machine learning; outcome prediction; personalized medicine; predictive modelling; statistical learning

Indexed keywords

HUMAN; INFORMATION PROCESSING; LEARNING; MACHINE LEARNING; MEDICAL RESEARCH; PROCEDURES; PSYCHIATRY; TRENDS;

EID: 84978080375     PISSN: 00332917     EISSN: 14698978     Source Type: Journal    
DOI: 10.1017/S0033291716001367     Document Type: Review
Times cited : (202)

References (65)
  • 2
    • 79953283356 scopus 로고    scopus 로고
    • Genetic interactions in cancer progression and treatment
    • Ashworth A, Lord CJ, Reis-Filho JS (2011). Genetic interactions in cancer progression and treatment. Cell 145, 30-38.
    • (2011) Cell , vol.145 , pp. 30-38
    • Ashworth, A.1    Lord, C.J.2    Reis-Filho, J.S.3
  • 4
    • 84964067483 scopus 로고    scopus 로고
    • A study of K-nearest neighbour as an imputation method
    • Batista G, Monard MC (2002). A study of K-nearest neighbour as an imputation method. Hybrid Intelligent Systems 87, 251-260.
    • (2002) Hybrid Intelligent Systems , vol.87 , pp. 251-260
    • Batista, G.1    Monard, M.C.2
  • 7
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling: The two cultures
    • Breiman L (2001a). Statistical modeling: The two cultures. Statistical Science 16, 199-215.
    • (2001) Statistical Science , vol.16 , pp. 199-215
    • Breiman, L.1
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L (2001b). Random Forests. Machine Learning 45, 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 11
    • 67349166946 scopus 로고    scopus 로고
    • Detecting gene-gene interactions that underlie human diseases
    • Cordell HJ (2009). Detecting gene-gene interactions that underlie human diseases. Nature Reviews Genetics 10, 392-404.
    • (2009) Nature Reviews Genetics , vol.10 , pp. 392-404
    • Cordell, H.J.1
  • 12
    • 34249753618 scopus 로고
    • Support-vector networks
    • ed. L. Saitta. Kluwer Academic Publishers: Boston
    • Cortes C, Vapnik VN (1995). Support-vector networks. In Machine Learning (ed. L. Saitta), vol. 20, pp. 273-297. Kluwer Academic Publishers: Boston.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.N.2
  • 13
    • 76749117619 scopus 로고    scopus 로고
    • An investigation of missing data methods for classification trees applied to binary response data
    • Ding Y, Simonoff JS, Eklan C (2010). An investigation of missing data methods for classification trees applied to binary response data. Journal of Machine Learning Research 11, 131-170.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 131-170
    • Ding, Y.1    Simonoff, J.S.2    Eklan, C.3
  • 15
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman J, Hastie T, Tibshirani R (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33, 1-22.
    • (2010) Journal of Statistical Software , vol.33 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 16
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman JH (1991). Multivariate adaptive regression splines. Annals of Statistics 19, 1-67.
    • (1991) Annals of Statistics , vol.19 , pp. 1-67
    • Friedman, J.H.1
  • 17
    • 84873348443 scopus 로고    scopus 로고
    • Common genetic variation and antidepressant efficacy in major depressive disorder: A meta-Analysis of three genome-wide pharmacogenetic studies
    • GENDEP Investigators, MARS Investigators, STAR D Investigators
    • GENDEP Investigators, MARS Investigators, STAR D Investigators (2013). Common genetic variation and antidepressant efficacy in major depressive disorder: A meta-Analysis of three genome-wide pharmacogenetic studies. American Journal of Psychiatry 170, 207-223.
    • (2013) American Journal of Psychiatry , vol.170 , pp. 207-223
  • 20
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I (2003). An introduction to variable and feature selection. Journal of Machine Learning Research 3, 1157-1182.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1
  • 21
    • 33745886270 scopus 로고    scopus 로고
    • Classifier technology and the illusion of progress
    • Hand DJ (2006). Classifier technology and the illusion of progress. Statistical Science 21, 1-15.
    • (2006) Statistical Science , vol.21 , pp. 1-15
    • Hand, D.J.1
  • 27
    • 84870064521 scopus 로고    scopus 로고
    • Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it?
    • Kapur S, Phillips AG, Insel TR (2012). Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Molecular Psychiatry 17, 1174-1183.
    • (2012) Molecular Psychiatry , vol.17 , pp. 1174-1183
    • Kapur, S.1    Phillips, A.G.2    Insel, T.R.3
  • 29
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Montreal, Quebec
    • Kohavi R (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, Quebec, vol. 2, pp. 1137-1143.
    • (1995) Proceedings of the 14th International Joint Conference on Artificial Intelligence , vol.2 , pp. 1137-1143
    • Kohavi, R.1
  • 32
    • 84899084283 scopus 로고    scopus 로고
    • Cross-validation pitfalls when selecting and assessing regression and classification models
    • Krstajic D, Buturovic LJ, Leahy DE, Thomas S (2014). Cross-validation pitfalls when selecting and assessing regression and classification models. Journal of Cheminformatics 6, 1-15.
    • (2014) Journal of Cheminformatics , vol.6 , pp. 1-15
    • Krstajic, D.1    Buturovic, L.J.2    Leahy, D.E.3    Thomas, S.4
  • 33
    • 84865610293 scopus 로고    scopus 로고
    • 3D data management: Controlling data volume, velocity and variety
    • Accessed 26 April 2016
    • Laney D (2001). 3D data management: controlling data volume, velocity and variety. In Gartner (http://blogs. gartner.com/doug-laney/files/2012/01/ad949-3DData-Management-Controlling-Data-Volume-Velocityand-Variety.pdf). Accessed 26 April 2016.
    • (2001) Gartner
    • Laney, D.1
  • 35
    • 34249732505 scopus 로고    scopus 로고
    • Modelling genotype-phenotype relationships and human disease with genetic interaction networks
    • Lehner B (2007). Modelling genotype-phenotype relationships and human disease with genetic interaction networks. Jornal of Experimental Biology 210, 1559-1564.
    • (2007) Jornal of Experimental Biology , vol.210 , pp. 1559-1564
    • Lehner, B.1
  • 36
    • 33750975917 scopus 로고    scopus 로고
    • Support vector machine learning from heterogeneous data: An empirical analysis using protein sequence and structure
    • Lewis DP, Jebara T, Noble WS (2006). Support vector machine learning from heterogeneous data: An empirical analysis using protein sequence and structure. Bioinformatics 22, 2753-2812.
    • (2006) Bioinformatics , vol.22 , pp. 2753-2812
    • Lewis, D.P.1    Jebara, T.2    Noble, W.S.3
  • 37
    • 84929510967 scopus 로고    scopus 로고
    • Machine learning applications in genetics and genomics
    • Libbrecht MW, Noble WS (2015). Machine learning applications in genetics and genomics. Nature Reviews Genetics 16, 321-352.
    • (2015) Nature Reviews Genetics , vol.16 , pp. 321-352
    • Libbrecht, M.W.1    Noble, W.S.2
  • 41
    • 84880920122 scopus 로고    scopus 로고
    • Bringing genome-wide association findings into clinical use
    • Manolio TA (2013). Bringing genome-wide association findings into clinical use. Nature Reviews Genetics 14, 549-606.
    • (2013) Nature Reviews Genetics , vol.14 , pp. 549-606
    • Manolio, T.A.1
  • 45
    • 84894384066 scopus 로고    scopus 로고
    • Scientific method: Statistical errors
    • Nuzzo R (2014). Scientific method: statistical errors. Nature 506, 150-151.
    • (2014) Nature , vol.506 , pp. 150-151
    • Nuzzo, R.1
  • 47
    • 84879321551 scopus 로고    scopus 로고
    • A clinical risk stratification tool for predicting treatment resistance in major depressive disorder
    • Perlis RH (2013). A clinical risk stratification tool for predicting treatment resistance in major depressive disorder. Biological Psychiatry 74, 7-14.
    • (2013) Biological Psychiatry , vol.74 , pp. 7-14
    • Perlis, R.H.1
  • 51
    • 84904804929 scopus 로고    scopus 로고
    • Biological insights from 108 schizophrenia-Associated genetic loci
    • Schizophrenia Working Group of the Psychiatric Genomics Consortium
    • Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014). Biological insights from 108 schizophrenia-Associated genetic loci. Nature 511, 421-426.
    • (2014) Nature , vol.511 , pp. 421-426
  • 54
    • 78649726626 scopus 로고    scopus 로고
    • Personalized medicine for depression: Can we match patients with treatments?
    • Simon GE, Perlis RH (2010). Personalized medicine for depression: can we match patients with treatments? American Journal of Psychiatry 167, 1445-1499.
    • (2010) American Journal of Psychiatry , vol.167 , pp. 1445-1499
    • Simon, G.E.1    Perlis, R.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.