-
1
-
-
77951589703
-
Clinical assessment incorporating a personal genome
-
Ashley EA, Butte AJ, Wheeler MT, Chen R, Klein TE, Dewey FE, Dudley JT, Ormond KE, Pavlovic A, Morgan AA, Pushkarev D, Neff NF, Hudgins L, Gong L, Hodges LM, Berlin DS, Thorn CF, Sangkuhl K, Hebert JM, Woon M, Sagreiya H, Whaley R, Knowles JW, Chou MF, Thakuria JV, Rosenbaum AM, Zaranek AW, Church GM, Greely HT, Quake SR, Altman RB (2010). Clinical assessment incorporating a personal genome. Lancet 375, 1525-1560.
-
(2010)
Lancet
, vol.375
, pp. 1525-1560
-
-
Ashley, E.A.1
Butte, A.J.2
Wheeler, M.T.3
Chen, R.4
Klein, T.E.5
Dewey, F.E.6
Dudley, J.T.7
Ormond, K.E.8
Pavlovic, A.9
Morgan, A.A.10
Pushkarev, D.11
Neff, N.F.12
Hudgins, L.13
Gong, L.14
Hodges, L.M.15
Berlin, D.S.16
Thorn, C.F.17
Sangkuhl, K.18
Hebert, J.M.19
Woon, M.20
Sagreiya, H.21
Whaley, R.22
Knowles, J.W.23
Chou, M.F.24
Thakuria, J.V.25
Rosenbaum, A.M.26
Zaranek, A.W.27
Church, G.M.28
Greely, H.T.29
Quake, S.R.30
Altman, R.B.31
more..
-
2
-
-
79953283356
-
Genetic interactions in cancer progression and treatment
-
Ashworth A, Lord CJ, Reis-Filho JS (2011). Genetic interactions in cancer progression and treatment. Cell 145, 30-38.
-
(2011)
Cell
, vol.145
, pp. 30-38
-
-
Ashworth, A.1
Lord, C.J.2
Reis-Filho, J.S.3
-
4
-
-
84964067483
-
A study of K-nearest neighbour as an imputation method
-
Batista G, Monard MC (2002). A study of K-nearest neighbour as an imputation method. Hybrid Intelligent Systems 87, 251-260.
-
(2002)
Hybrid Intelligent Systems
, vol.87
, pp. 251-260
-
-
Batista, G.1
Monard, M.C.2
-
7
-
-
0000245743
-
Statistical modeling: The two cultures
-
Breiman L (2001a). Statistical modeling: The two cultures. Statistical Science 16, 199-215.
-
(2001)
Statistical Science
, vol.16
, pp. 199-215
-
-
Breiman, L.1
-
8
-
-
0035478854
-
Random forests
-
Breiman L (2001b). Random Forests. Machine Learning 45, 5-32.
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
9
-
-
84890522254
-
Dissecting psychiatric spectrum disorders by generative embedding
-
Brodersen KH, Deserno L, Schlagenhauf F, Lin Z, Penny WD, Buhmann JM, Stephan KE (2014). Dissecting psychiatric spectrum disorders by generative embedding. NeuroImage: Clinical 4, 98-111.
-
(2014)
NeuroImage: Clinical
, vol.4
, pp. 98-111
-
-
Brodersen, K.H.1
Deserno, L.2
Schlagenhauf, F.3
Lin, Z.4
Penny, W.D.5
Buhmann, J.M.6
Stephan, K.E.7
-
11
-
-
67349166946
-
Detecting gene-gene interactions that underlie human diseases
-
Cordell HJ (2009). Detecting gene-gene interactions that underlie human diseases. Nature Reviews Genetics 10, 392-404.
-
(2009)
Nature Reviews Genetics
, vol.10
, pp. 392-404
-
-
Cordell, H.J.1
-
12
-
-
34249753618
-
Support-vector networks
-
ed. L. Saitta. Kluwer Academic Publishers: Boston
-
Cortes C, Vapnik VN (1995). Support-vector networks. In Machine Learning (ed. L. Saitta), vol. 20, pp. 273-297. Kluwer Academic Publishers: Boston.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.N.2
-
13
-
-
76749117619
-
An investigation of missing data methods for classification trees applied to binary response data
-
Ding Y, Simonoff JS, Eklan C (2010). An investigation of missing data methods for classification trees applied to binary response data. Journal of Machine Learning Research 11, 131-170.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 131-170
-
-
Ding, Y.1
Simonoff, J.S.2
Eklan, C.3
-
16
-
-
0002432565
-
Multivariate adaptive regression splines
-
Friedman JH (1991). Multivariate adaptive regression splines. Annals of Statistics 19, 1-67.
-
(1991)
Annals of Statistics
, vol.19
, pp. 1-67
-
-
Friedman, J.H.1
-
17
-
-
84873348443
-
Common genetic variation and antidepressant efficacy in major depressive disorder: A meta-Analysis of three genome-wide pharmacogenetic studies
-
GENDEP Investigators, MARS Investigators, STAR D Investigators
-
GENDEP Investigators, MARS Investigators, STAR D Investigators (2013). Common genetic variation and antidepressant efficacy in major depressive disorder: A meta-Analysis of three genome-wide pharmacogenetic studies. American Journal of Psychiatry 170, 207-223.
-
(2013)
American Journal of Psychiatry
, vol.170
, pp. 207-223
-
-
-
20
-
-
33745561205
-
An introduction to variable and feature selection
-
Guyon I (2003). An introduction to variable and feature selection. Journal of Machine Learning Research 3, 1157-1182.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
-
21
-
-
33745886270
-
Classifier technology and the illusion of progress
-
Hand DJ (2006). Classifier technology and the illusion of progress. Statistical Science 21, 1-15.
-
(2006)
Statistical Science
, vol.21
, pp. 1-15
-
-
Hand, D.J.1
-
25
-
-
84963546304
-
Combining clinical variables to optimize prediction of antidepressant treatment outcomes
-
Iniesta R, Malki K, MaierW, Rietschel M, Mors O, Hauser J, Henigsberg N, Dernovsek MZ, Souery D, Stahl D, Dobson R, Aitchison KJ, Farmer A, Lewis CM, McGuffin P, Uher R (2016). Combining clinical variables to optimize prediction of antidepressant treatment outcomes. Journal of Psychiatric Research 78, 94-102.
-
(2016)
Journal of Psychiatric Research
, vol.78
, pp. 94-102
-
-
Iniesta, R.1
Malki, K.2
Maier, W.3
Rietschel, M.4
Mors, O.5
Hauser, J.6
Henigsberg, N.7
Dernovsek, M.Z.8
Souery, D.9
Stahl, D.10
Dobson, R.11
Aitchison, K.J.12
Farmer, A.13
Lewis, C.M.14
McGuffin, P.15
Uher, R.16
-
26
-
-
77957130052
-
Missing data imputation using statistical and machine learning methods in a real breast cancer problem
-
Jerez JM, Molina I, Garcia-Laencina PJ, Alba E, Ribelles N, Martin M, Franco L (2010). Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artificial Intelligence in Medicine 50, 105-119.
-
(2010)
Artificial Intelligence in Medicine
, vol.50
, pp. 105-119
-
-
Jerez, J.M.1
Molina, I.2
Garcia-Laencina, P.J.3
Alba, E.4
Ribelles, N.5
Martin, M.6
Franco, L.7
-
27
-
-
84870064521
-
Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it?
-
Kapur S, Phillips AG, Insel TR (2012). Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Molecular Psychiatry 17, 1174-1183.
-
(2012)
Molecular Psychiatry
, vol.17
, pp. 1174-1183
-
-
Kapur, S.1
Phillips, A.G.2
Insel, T.R.3
-
29
-
-
85164392958
-
A study of cross-validation and bootstrap for accuracy estimation and model selection
-
Montreal, Quebec
-
Kohavi R (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, Quebec, vol. 2, pp. 1137-1143.
-
(1995)
Proceedings of the 14th International Joint Conference on Artificial Intelligence
, vol.2
, pp. 1137-1143
-
-
Kohavi, R.1
-
32
-
-
84899084283
-
Cross-validation pitfalls when selecting and assessing regression and classification models
-
Krstajic D, Buturovic LJ, Leahy DE, Thomas S (2014). Cross-validation pitfalls when selecting and assessing regression and classification models. Journal of Cheminformatics 6, 1-15.
-
(2014)
Journal of Cheminformatics
, vol.6
, pp. 1-15
-
-
Krstajic, D.1
Buturovic, L.J.2
Leahy, D.E.3
Thomas, S.4
-
33
-
-
84865610293
-
3D data management: Controlling data volume, velocity and variety
-
Accessed 26 April 2016
-
Laney D (2001). 3D data management: controlling data volume, velocity and variety. In Gartner (http://blogs. gartner.com/doug-laney/files/2012/01/ad949-3DData-Management-Controlling-Data-Volume-Velocityand-Variety.pdf). Accessed 26 April 2016.
-
(2001)
Gartner
-
-
Laney, D.1
-
35
-
-
34249732505
-
Modelling genotype-phenotype relationships and human disease with genetic interaction networks
-
Lehner B (2007). Modelling genotype-phenotype relationships and human disease with genetic interaction networks. Jornal of Experimental Biology 210, 1559-1564.
-
(2007)
Jornal of Experimental Biology
, vol.210
, pp. 1559-1564
-
-
Lehner, B.1
-
36
-
-
33750975917
-
Support vector machine learning from heterogeneous data: An empirical analysis using protein sequence and structure
-
Lewis DP, Jebara T, Noble WS (2006). Support vector machine learning from heterogeneous data: An empirical analysis using protein sequence and structure. Bioinformatics 22, 2753-2812.
-
(2006)
Bioinformatics
, vol.22
, pp. 2753-2812
-
-
Lewis, D.P.1
Jebara, T.2
Noble, W.S.3
-
37
-
-
84929510967
-
Machine learning applications in genetics and genomics
-
Libbrecht MW, Noble WS (2015). Machine learning applications in genetics and genomics. Nature Reviews Genetics 16, 321-352.
-
(2015)
Nature Reviews Genetics
, vol.16
, pp. 321-352
-
-
Libbrecht, M.W.1
Noble, W.S.2
-
41
-
-
84880920122
-
Bringing genome-wide association findings into clinical use
-
Manolio TA (2013). Bringing genome-wide association findings into clinical use. Nature Reviews Genetics 14, 549-606.
-
(2013)
Nature Reviews Genetics
, vol.14
, pp. 549-606
-
-
Manolio, T.A.1
-
45
-
-
84894384066
-
Scientific method: Statistical errors
-
Nuzzo R (2014). Scientific method: statistical errors. Nature 506, 150-151.
-
(2014)
Nature
, vol.506
, pp. 150-151
-
-
Nuzzo, R.1
-
46
-
-
84884136574
-
Cognitive profiles of three clusters of patients with a first-episode psychosis
-
Ochoa S, Huerta-Ramos E, Barajas A, Iniesta R, Dolz M, Baños I, Sánchez B, Carlson J, Foix A, Pelaez T, Coromina M, Pardo M, GENIPE group, Usall J (2013). Cognitive profiles of three clusters of patients with a first-episode psychosis. Schizophrenia Research 150, 151-157.
-
(2013)
Schizophrenia Research
, vol.150
, pp. 151-157
-
-
Ochoa, S.1
Huerta-Ramos, E.2
Barajas, A.3
Iniesta, R.4
Dolz, M.5
Baños, I.6
Sánchez, B.7
Carlson, J.8
Foix, A.9
Pelaez, T.10
Coromina, M.11
Pardo, M.12
Group, G.13
Usall, J.14
-
47
-
-
84879321551
-
A clinical risk stratification tool for predicting treatment resistance in major depressive disorder
-
Perlis RH (2013). A clinical risk stratification tool for predicting treatment resistance in major depressive disorder. Biological Psychiatry 74, 7-14.
-
(2013)
Biological Psychiatry
, vol.74
, pp. 7-14
-
-
Perlis, R.H.1
-
51
-
-
84904804929
-
Biological insights from 108 schizophrenia-Associated genetic loci
-
Schizophrenia Working Group of the Psychiatric Genomics Consortium
-
Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014). Biological insights from 108 schizophrenia-Associated genetic loci. Nature 511, 421-426.
-
(2014)
Nature
, vol.511
, pp. 421-426
-
-
-
53
-
-
84981332654
-
Learning from heterogeneous sources via gradient boosting consensus
-
Anaheim, CA
-
Shi X, Paiement JF, Grangier D, Yu PS (2012). Learning from heterogeneous sources via gradient boosting consensus. In International Conference on Data Mining, Anaheim, CA, pp. 1-12.
-
(2012)
International Conference on Data Mining
, pp. 1-12
-
-
Shi, X.1
Paiement, J.F.2
Grangier, D.3
Yu, P.S.4
-
54
-
-
78649726626
-
Personalized medicine for depression: Can we match patients with treatments?
-
Simon GE, Perlis RH (2010). Personalized medicine for depression: can we match patients with treatments? American Journal of Psychiatry 167, 1445-1499.
-
(2010)
American Journal of Psychiatry
, vol.167
, pp. 1445-1499
-
-
Simon, G.E.1
Perlis, R.H.2
-
55
-
-
80055008094
-
Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function
-
International Lung Cancer Consortium; GIANT consortium
-
Soler Artigas M, Loth DW, Wain LV, Gharib SA, Obeidat M, Tang W, Zhai G, Zhao JH, Smith AV, Huffman JE, Albrecht E, Jackson CM, Evans DM, Cadby G, Fornage M, Manichaikul A, Lopez LM, Johnson T, Aldrich MC, Aspelund T, Barroso I, Campbell H, Cassano PA, Couper DJ, Eiriksdottir G, Franceschini N, Garcia M, Gieger C, Gislason GK, Grkovic I, Hammond CJ, Hancock DB, Harris TB, Ramasamy A, Heckbert SR, Heliovaara M, Homuth G, Hysi PG, James AL, Jankovic S, Joubert BR, Karrasch S, Klopp N, Koch B, Kritchevsky SB, Launer LJ, Liu Y, Loehr LR, Lohman K, Loos RJ, Lumley T, Al Balushi KA, Ang WQ, Barr RG, Beilby J, Blakey JD, Boban M, Boraska V, Brisman J, Britton JR, Brusselle GG, Cooper C, Curjuric I, Dahgam S, Deary IJ, Ebrahim S, Eijgelsheim M, Francks C, Gaysina D, Granell R, Gu X, Hankinson JL, Hardy R, Harris SE, Henderson J, Henry A, Hingorani AD, Hofman A, Holt PG, Hui J, Hunter ML, Imboden M, Jameson KA, Kerr SM, Kolcic I, Kronenberg F, Liu JZ, Marchini J, McKeever T, Morris AD, Olin AC, Porteous DJ, Postma DS, Rich SS, Ring SM, Rivadeneira F, Rochat T, Sayer AA, Sayers I, Sly PD, Smith GD, Sood A, Starr JM, Uitterlinden AG, Vonk JM, Wannamethee SG, Whincup PH, Wijmenga C, Williams OD, Wong A, Mangino M, Marciante KD, McArdle WL, Meibohm B, Morrison AC, North KE, Omenaas E, Palmer LJ, Pietilainen KH, Pin I, Pola Sbreve Ek O, Pouta A, Psaty BM, Hartikainen AL, Rantanen T, Ripatti S, Rotter JI, Rudan I, Rudnicka AR, Schulz H, Shin SY, Spector TD, Surakka I, Vitart V, Volzke H, Wareham NJ, Warrington NM, Wichmann HE, Wild SH, Wilk JB, Wjst M, Wright AF, Zgaga L, Zemunik T, Pennell CE, Nyberg F, Kuh D, Holloway JW, Boezen HM, Lawlor DA, Morris RW, Probst-Hensch N, International Lung Cancer Consortium; GIANT consortium, Kaprio J, Wilson JF, Hayward C, Kahonen M, Heinrich J, Musk AW, Jarvis DL, Glaser S, Jarvelin MR, Ch Stricker BH, Elliott P, O'Connor GT, Strachan DP, London SJ, Hall IP, Gudnason V, Tobin MD (2011). Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function. Nature Genetics 43, 1082-1171.
-
(2011)
Nature Genetics
, vol.43
, pp. 1082-1171
-
-
Soler Artigas, M.1
Loth, D.W.2
Wain, L.V.3
Gharib, S.A.4
Obeidat, M.5
Tang, W.6
Zhai, G.7
Zhao, J.H.8
Smith, A.V.9
Huffman, J.E.10
Albrecht, E.11
Jackson, C.M.12
Evans, D.M.13
Cadby, G.14
Fornage, M.15
Manichaikul, A.16
Lopez, L.M.17
Johnson, T.18
Aldrich, M.C.19
Aspelund, T.20
Barroso, I.21
Campbell, H.22
Cassano, P.A.23
Couper, D.J.24
Eiriksdottir, G.25
Franceschini, N.26
Garcia, M.27
Gieger, C.28
Gislason, G.K.29
Grkovic, I.30
Hammond, C.J.31
Hancock, D.B.32
Harris, T.B.33
Ramasamy, A.34
Heckbert, S.R.35
Heliovaara, M.36
Homuth, G.37
Hysi, P.G.38
James, A.L.39
Jankovic, S.40
Joubert, B.R.41
Karrasch, S.42
Klopp, N.43
Koch, B.44
Kritchevsky, S.B.45
Launer, L.J.46
Liu, Y.47
Loehr, L.R.48
Lohman, K.49
Loos, R.J.50
Lumley, T.51
Al Balushi, K.A.52
Ang, W.Q.53
Barr, R.G.54
Beilby, J.55
Blakey, J.D.56
Boban, M.57
Boraska, V.58
Brisman, J.59
Britton, J.R.60
Brusselle, G.G.61
Cooper, C.62
Curjuric, I.63
Dahgam, S.64
Deary, I.J.65
Ebrahim, S.66
Eijgelsheim, M.67
Francks, C.68
Gaysina, D.69
Granell, R.70
Gu, X.71
Hankinson, J.L.72
Hardy, R.73
Harris, S.E.74
Henderson, J.75
Henry, A.76
Hingorani, A.D.77
Hofman, A.78
Holt, P.G.79
Hui, J.80
Hunter, M.L.81
Imboden, M.82
Jameson, K.A.83
Kerr, S.M.84
Kolcic, I.85
Kronenberg, F.86
Liu, J.Z.87
Marchini, J.88
McKeever, T.89
Morris, A.D.90
Olin, A.C.91
Porteous, D.J.92
Postma, D.S.93
Rich, S.S.94
Ring, S.M.95
Rivadeneira, F.96
Rochat, T.97
Sayer, A.A.98
Sayers, I.99
more..
-
56
-
-
73849094087
-
Assessing the performance of prediction models: A framework for traditional and novel measures
-
Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, Pencina MJ, Kattan MW(2010). Assessing the performance of prediction models: A framework for traditional and novel measures. Epidemiology 21, 128-165.
-
(2010)
Epidemiology
, vol.21
, pp. 128-165
-
-
Steyerberg, E.W.1
Vickers, A.J.2
Cook, N.R.3
Gerds, T.4
Gonen, M.5
Obuchowski, N.6
Pencina, M.J.7
Kattan, M.W.8
-
58
-
-
62149114432
-
Differential efficacy of escitalopram and nortriptyline on dimensional measures of depression
-
Uher R, Maier W, Hauser J, Marusic A, Schmael C, Mors O, Henigsberg N, Souery D, Placentino A, Rietschel M, Zobel A,Dmitrzak-Weglarz M, Petrovic A, Jorgensen L, Kalember P, Giovannini C, Barreto M, Elkin A, Landau S, Farmer A, Aitchison KJ, McGuffin P (2009). Differential efficacy of escitalopram and nortriptyline on dimensional measures of depression. British Journal of Psychiatry 194, 252-260.
-
(2009)
British Journal of Psychiatry
, vol.194
, pp. 252-260
-
-
Uher, R.1
Maier, W.2
Hauser, J.3
Marusic, A.4
Schmael, C.5
Mors, O.6
Henigsberg, N.7
Souery, D.8
Placentino, A.9
Rietschel, M.10
Zobel, A.11
Dmitrzak-Weglarz, M.12
Petrovic, A.13
Jorgensen, L.14
Kalember, P.15
Giovannini, C.16
Barreto, M.17
Elkin, A.18
Landau, S.19
Farmer, A.20
Aitchison, K.J.21
McGuffin, P.22
more..
-
59
-
-
77951779878
-
Genome-wide pharmacogenetics of antidepressant response in the GENDEP project
-
Uher R, Perroud N, Ng MY, Hauser J, Henigsberg N, Maier W, Mors O, Placentino A, Rietschel M, Souery D, Zagar T, Czerski PM, Jerman B, Larsen ER, Schulze TG, Zobel A, Cohen-Woods S, Pirlo K, Butler AW, Muglia P, Barnes MR, Lathrop M, Farmer A, Breen G, Aitchison KJ, Craig I, Lewis CM, McGuffin P (2010). Genome-wide pharmacogenetics of antidepressant response in the GENDEP project. American Journal of Psychiatry 167, 555-618.
-
(2010)
American Journal of Psychiatry
, vol.167
, pp. 555-618
-
-
Uher, R.1
Perroud, N.2
Ng, M.Y.3
Hauser, J.4
Henigsberg, N.5
Maier, W.6
Mors, O.7
Placentino, A.8
Rietschel, M.9
Souery, D.10
Zagar, T.11
Czerski, P.M.12
Jerman, B.13
Larsen, E.R.14
Schulze, T.G.15
Zobel, A.16
Cohen-Woods, S.17
Pirlo, K.18
Butler, A.W.19
Muglia, P.20
Barnes, M.R.21
Lathrop, M.22
Farmer, A.23
Breen, G.24
Aitchison, K.J.25
Craig, I.26
Lewis, C.M.27
McGuffin, P.28
more..
-
61
-
-
84906266049
-
Neuropsychosocial profiles of current and future adolescent alcohol misusers
-
Whelan R, Watts R, Orr CA, Althoff RR, Artiges E, Banaschewski T, Barker GJ, Bokde AL, Buchel C, Carvalho FM, Conrod PJ, Flor H, Fauth-Buhler M, Frouin V, Gallinat J, Gan G, Gowland P, Heinz A, Ittermann B, Lawrence C, Mann K, Martinot JL, Nees F, Ortiz N, Paillere-Martinot ML, Paus T, Pausova Z, Rietschel M, Robbins TW, Smolka MN, Strohle A, Schumann G, Garavan H, IMAGEN Consortium (2014). Neuropsychosocial profiles of current and future adolescent alcohol misusers. Nature 512, 185-193.
-
(2014)
Nature
, vol.512
, pp. 185-193
-
-
Whelan, R.1
Watts, R.2
Orr, C.A.3
Althoff, R.R.4
Artiges, E.5
Banaschewski, T.6
Barker, G.J.7
Bokde, A.L.8
Buchel, C.9
Carvalho, F.M.10
Conrod, P.J.11
Flor, H.12
Fauth-Buhler, M.13
Frouin, V.14
Gallinat, J.15
Gan, G.16
Gowland, P.17
Heinz, A.18
Ittermann, B.19
Lawrence, C.20
Mann, K.21
Martinot, J.L.22
Nees, F.23
Ortiz, N.24
Paillere-Martinot, M.L.25
Paus, T.26
Pausova, Z.27
Rietschel, M.28
Robbins, T.W.29
Smolka, M.N.30
Strohle, A.31
Schumann, G.32
Garavan, H.33
Consortium, I.34
more..
|